ECE 307 - Techniques for Engineering Decisions

Lecture 6. Transshipment and Shortest Path Problems

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

TRANSSHIPMENT PROBLEMS

We consider the shipment of a homogeneous commodity or product from a specified point or source to a particular destination or sink: the homogeneity characteristic ensures that each unit shipped is identical and is independent of point of origin
\square Typically, the source and the sink are not directly connected; rather, the flows pass through the transshipment points, i.e., the intermediate nodes
\square The objective is to determine the maximal flow from the source to the sink

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TRANSSHIPMENT PROBLEMS

O nodes 1, 2, 3, 4 and 5 are the transshipment points
O directed arcs of the network are ($s, 1$), ($s, 2$), $(1,2),(1,3),(2,5),(3,4),(3,5),(4,5),(5,4)$, $(4, t),(5, t)$; the existence of an arc from 4 to 5 and from 5 to 4 allows bi-directional flows between the two nodes
each arc may be constrained in terms of a limit on the flow through the arc

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

MAX FLOW PROBLEM

We denote by $f_{i j}$ the flow from i to j, which equals the amount of the commodity shipped from i to j on the arc (i, j) that directly connects the node \boldsymbol{i} to the node \boldsymbol{j}

The problem is to determine the maximal flow f from s to t taking into account the flow limits $\boldsymbol{k}_{i j}$ of each arc (i, j)
\square The mathematical statement of the problem is

MAX FLOW PROBLEM

$$
\max Z=f
$$

st.

$$
\left.\begin{array}{c}
0 \leq f_{i j} \leq k_{i j} \quad \begin{array}{c}
\forall \text { arc }(i, j) \text { that connects } \\
\text { nodes } i \text { and } j
\end{array} \\
f=\sum_{i} f_{s i} \quad \text { at source } s \\
\left.\sum_{i} f_{i t}=f \quad \begin{array}{c}
\text { at sink } t
\end{array}\right\} \begin{array}{c}
\text { conservation of } \\
\text { flow relations }
\end{array} \\
\sum_{i} f_{i j}=\sum_{k} f_{j k}
\end{array}\right\} \text { at each transshipment node } j
$$

MAX FLOW PROBLEM

While we may use the simplex approach to solve
the max flow problem, we construct a numerically,
highly efficient network method to determine f
\square We develop such a scheme by making detailed use of graph theoretic notions
\square We start out by introducing some definitions

DEFINITIONS OF NETWORK TERMS

\square Each arc is directed and so for an arc (i, j),

$$
f_{i j} \geq 0
$$

\square A forward arc at a node i is one that leaves the node i to some node j and is denoted by (i, j)
\square A backward arc at node i is one that enters node i from some node j and is denoted by (j, i)

DEFINITIONS OF NETWORK TERMS

\square A path connecting node i to node j is a sequence of arcs that starts at node i and terminates at node j

O we denote a path by

$$
\mathscr{P}=\{(i, k),(k, l), \ldots,(m, j)\}
$$

O in the example network

- $\{(1,2),(2,5),(5,4)\}$ is a path from 1 to 4
- $\{(1,3),(3,4)\}$ is another path from 1 to 4

DEFINITIONS OF NETWORK TERMS

\square A cycle is a path with the condition $\boldsymbol{j}=\boldsymbol{i}$, i.e.,

$$
\mathscr{P}=\{(i, k),(k, l), \ldots,(m, i)\}
$$

We denote the set of nodes of the network by \mathscr{N}
O the definition is

$$
\mathscr{N}=\{i: i \text { is a node of the network }\}
$$

O In the example network

$$
\mathscr{N}=\{s, 1,2,3,4,5, t\}
$$

NETWORK CUT CAPACITY

A cut is a partitioning of nodes into two distinct subsets \mathcal{S} and \mathcal{T} with the properties

$$
\mathcal{N}=S \cup \mathcal{T} \text { and } S \cap \mathcal{T}=\varnothing
$$

We are interested in cuts with the property that

$$
s \in S \text { and } t \in \mathcal{T}
$$

We say that the sets \mathcal{S} and \mathcal{T} provide an $s-t$ cut; in the example network,

$$
S=\{s, 1,2\} \quad \text { and } \quad \tau=\{3,4,5, t\}
$$

provide an $s-t$ cut

NETWORK CUT

The capacity of a cut is

$$
K(s, \tau)=\sum_{\substack{s \in S \\ t \in \mathcal{T}}} k_{s t}
$$

In the example network with

$$
\mathcal{S}=\{s, 1,2\} \text { and } \mathcal{T}=\{3,4,5, t\}
$$

we have

$$
K(S, \mathcal{T})=k_{13}+k_{25}
$$

but for the cut with

$$
\begin{aligned}
& \mathcal{S}=\{\mathbf{s}, \mathbf{1}, 2,3,4\} \text { and } \mathcal{T}=\{5, t\} \\
& K(S, \mathcal{T})=k_{4, t}+k_{4,5}+k_{3,5}+k_{2,5}
\end{aligned}
$$

NETWORK CUT

Note: arc $(5,4)$ is directed from a node in \mathcal{T} to a node in \mathcal{S} and is not included in the summation
\square A salient characteristic of the $s-t$ cuts of interest is that when all the arcs in the cut are removed, then no path exists from s to t; consequently, no flow is possible since any flow from s to t must go through the arcs in a cut

The flow is limited by the capacity of the cut

NETWORK CUT LEMMA

For any directed network, the flow f from s to t is constrained by an $s-t$ cut so that

$$
f \leq K(S, \mathcal{T}) \text { for every } s-t \text { cut set } S, \mathcal{T}
$$

Corollaries of this lemma are
(i) max flow $\leq K(S, \mathcal{T}) \forall S, \mathcal{T}$
and
(ii) max flow $\leq \min _{s, T} K(S, T)$

MAX - FLOW - MIN - CUT THEOREM

For any network, the value of the maximal flow from s to t is equal to the minimal cut, i.e., the cut S, \mathcal{T} with the smallest capacity

The max-flow min-cut theorem allows us, in principle, to find the maximal flow in a network, we find the capacity of each of the cuts and determine the cut with the smallest capacity

MAX FLOW

The maximal flow algorithm is based on the identification of a path through which a positive flow from s to t can be sent - the so-called flow augmenting path

The procedure is continued until no such flow augmenting path can be found and therefore we have the maximal flow

The maximal flow algorithm is based on the repeated application of the labeling procedure

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

LABELING PROCEDURE

\square The labeling procedure is the basic scheme to determine the maximum flow in a network

The labeling procedure is used to find a flow
augmenting path from s to t
We say that a node \boldsymbol{j} can be labeled if and only if flow can be sent from s to t and node j is on a path to make such flow possible

LABELING PROCEDURE

Step 0: start with node s
Step 1: given that node i is already labeled, label node \boldsymbol{j} only if
(i) either there exists an $\operatorname{arc}(i, j)$ and

$$
f_{i j}<k_{i j}
$$

(ii) or, there exists an arc ($j, i)$ and

$$
f_{j i}>0
$$

Step 2 : if $j=t$, stop; else, return to Step 1
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE MAX FLOW ALGORITHM

Step 0 : start with a feasible flow
Step 1 : use the labeling procedure to find a flow augmenting path
Step 2: determine the maximum value δ for the largest increase (decrease) of flow on all forward (backward) arcs

Step 3 : use the labeling procedure to find a flow augmenting path: if no such path exists, stop; else, go to Step 2

ILLUSTRATIVE EXAMPLE

- Consider the simple network with the flow capacities on each arc indicated

ILLUSTRATIVE EXAMPLE

We apply the labeling procedure

$$
f=\min \{6,2,7\}=2
$$

ILLUSTRATIVE EXAMPLE

\square Consider the simple network with the flow and the capacity on each arc (i, j) indicated by $\left(f_{i j}, k_{i j}\right)$

ILLUSTRATIVE EXAMPLE

We repeat application of the labeling procedure

$$
f=\min \{5,9\}=5
$$

ILLUSTRATIVE EXAMPLE

\square We increase the flow by 5

ILLUSTRATIVE EXAMPLE

We repeat application of the labeling procedure

$$
f=\min \{4,9\}=4
$$

ILLUSTRATIVE EXAMPLE

We repeat application of the labeling procedure

$f=\min \{4,3,5\}=3$
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ILLUSTRATIVE EXAMPLE

We increase the flow by 3

UNDIRECTED NETWORKS

A network with undirected arcs is called an undirected network: the flows on each arc (i, j) with the limit $k_{i j}$ cannot violate the capacity constraints in either direction
\square Mathematically, we require

$$
\left.\begin{array}{rcc}
f_{i j} \leq k_{i j} \\
f_{j i} & \leq k_{j i} \\
f_{i j} f_{j i}= & 0
\end{array}\right\} \text { interpretation of } 1 \text { unidirectional flow below }
$$

EXAMPLE OF A NETWORK WITH 3 UNDIRECTED ARCS

EXAMPLE OF A NETWORK WITH UNDIRECTED ARCS

To make the problem realistic, we may view the capacities as representing traffic flow limits: the directed arcs correspond to unidirectional streets and the problem is to place one-way signs on each undirected street (i, j) so as to maximize the traffic flow from s to t

The procedure is to replace each undirected arc by two directed arcs (i, j) and (j, i) to determine the maximal $s-t$ flow

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

EXAMPLE OF A NETWORK WITH 3 UNDIRECTED ARCS

EXAMPLE OF A NETWORK WITH 3 UNDIRECTED ARCS

We apply the max flow scheme to the directed network and give the following interpretations to the flows on the max flow bidirectional arcs that are the initially undirected $\operatorname{arcs}(i, j)$: if

$$
f_{i j}>0, f_{j i}>0 \text { and } f_{i j}>f_{j i},
$$

set up the flow from i to j with value $f_{i j}-f_{j i}$ and remove the arc (j, i)
\square The determination of the max flow f for this example is easily performed

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

EXAMPLE OF A NETWORK WITH 3 UNDIRECTED ARCS

EXAMPLE OF A NETWORK WITH

 3 UNDIRECTED ARCS : RESULTflow: $s \rightarrow 1 \rightarrow 3 \rightarrow t \quad=30$
flow: $s \rightarrow 2 \rightarrow 4 \rightarrow t \quad=30$
flow: $s \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow t=10$
and so the maximum flow is $30+30+10=70$
one way signs must be put from $1 \rightarrow 4$ and $4 \rightarrow 3$;
an alternative path of a flow of 10 is the path:
$s \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow t$, which requires one-way
signs from $\mathbf{1 \rightarrow 2}$ and $4 \rightarrow 3$
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NETWORKS WITH MULTIPLE SOURCES AND MULTIPLE SINKS

We next consider a network with several supply
and several demand points

We introduce a super source \hat{s} linking to all the
sources and a super sink $\hat{\boldsymbol{t}}$ linking all the sinks

We can consequently apply the max flow algorithm to the modified network

MULTIPLE - SOURCE / MULTIPLE SINK NETWORK EXAMPLE

The transshipment problem is feasible if and only if the maximal $\hat{\boldsymbol{s}}-\hat{\boldsymbol{t}}$ flow f satisfies

$$
f=\sum_{\text {sinks }} \text { demands }
$$

\square We need to show that
O the transshipment problem is infeasible since the network cannot accommodate the total demand of 35

O the smallest shortage for this problem is 5

MULTIPLE - SOURCE / MULTIPLE SINK NETWORK EXAMPLE

MULTIPLE - SOURCE / MULTIPLE SINK NETWORK EXAMPLE

\square The minimum cut is shown and has capacity

$$
15+5+5+5=30 ;
$$

the maximum flow is, therefore, 30

Since the maximum flow fails to meet the total
demand of 35 units by the super sink, the problem
is infeasible; the minimum shortage is 5

$\begin{gathered} \text { APPLICATION TO MANPOWER } \\ \text { SCHEDULING } \end{gathered}$			
Consider the case of a company that must complete its 4 engineering projects within 6 months			
project	earliest start month	latest finish month	manpower requirements (man month)
A	1	4	6
B	1	6	8
C	2	5	3
D	1	6	4

APPLICATION TO MANPOWER SCHEDULING

There are the following additional constraints:
O the company has only 4 engineers
O at most 2 engineers may be assigned to any one project in a given month

O no engineer may be assigned to more than one project at any time

The question is whether there is a feasible assignment and, if so, determine the optimal assignment

APPLICATION TO MANPOWER SCHEDULING

The solution approach is to set up the problem as a transshipment network

O the sources are the $\mathbf{6}$ months of engineer labor
O the sinks are the 4 projects that must be done
O an $\operatorname{arc}(i, j)$ is introduced whenever a feasible assignment of the engineers who work in month i can be made to project j with

$$
k_{i j}=2 \quad i=1,2, \ldots, 6, \quad j=A, B, C, D
$$

O there is no arc $(1, C)$ since project C cannot start before month 2

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

APPLICATION TO MANPOWER SCHEDULING

The transshipment problem is feasible if the total
demand

$$
6+8+3+4=21
$$

can be met

We determine whether a feasible schedule exists
and if so, we find it

SHORTEST ROUTE PROBLEM

The problem is to determine the shortest path from $s=1$ to $t=n$ in a network with the set of nodes

$$
\mathscr{N}=\{1,2, \ldots, n\}
$$

and the set of arcs $\{(i, j)\}$, where for each $\operatorname{arc}(i, j)$

$$
d_{i j}=\text { distance or transit time }
$$

\square The determination of the shortest path from 1 to n requires the specification of the path

$$
\left\{\left(1, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{q}, n\right)\right\}
$$

SHORTEST ROUTE PROBLEM

We can write an $L P$ formulation of this problem in the form of a transshipment problem:
ship 1 unit from node 1 to node n by
minimizing the shipping costs using the costs

$$
d_{i j}=\left\{\begin{array}{l}
\text { shipping costs for } 1 \text { unit from } i \text { to } j \\
\infty \text { whenever } i \text { and } j \text { are not directly connected }
\end{array}\right.
$$

\square But, in practice, we use the Dijkstra scheme solution

THE DIJKSTRA ALGORITHM

The solution is very efficiently performed using the Dijkstra algorithm
\square The assumptions are
O $d_{i j}$ is given for each pair of connected nodes
$\bigcirc d_{i j} \geq 0$
\square The scheme is, basically, a label assignment procedure, which assigns nodes with either a permanent or a temporary label

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE DIJKSTRA ALGORITHM

The temporary label of a node i is an upper bound on the shortest distance from node 1 to node i

The permanent label is the actual shortest distance from node 1 to node i
\square A temporary label becomes permanent when we find the tightest upper bound, i.e., the shortest distance

THE DIJKSTRA ALGORITHM

Step 0: assign the permanent label 0 to node 1
Step 1 : assign temporary labels to all the other nodes
O $d_{1 j}$ if node \boldsymbol{j} is directly connected to node 1

O ∞ if node \boldsymbol{j} is not directly connected to node 1
and select the minimum of the temporary labels and declare it permanent ; in case of ties, the choice is arbitrary (but a rule is required to break the tie in a systematic way)

THE DIJKSTRA ALGORITHM

Step 2 : let ℓ be the node most recently assigned a permanent label and consider each node \boldsymbol{j} with a temporary label; recompute each label

$$
\min \left\{\begin{array}{cc}
\text { temporary label } \\
\text { of node } j
\end{array}, \begin{array}{c}
\text { permanent label } \\
\text { of node } \ell
\end{array}+d_{\ell j}\right\}
$$

Step 3: select the smallest valued temporary label \& declare its node permanent ; in case of ties, the choice is arbitrary - but, we need a rule

Step 4 : if the selected node is n, stop; else, return to Step 2
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE DIJKSTRA ALGORITHM

We obtain the shortest path by retracing the
sequence of nodes with permanent labels starting
at node n and returning back to node 1
\square The path is then given in the forward direction
starting from node 1 and ending at node n

EXAMPLE : SHORTEST PATH

\square Consider the undirected network

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE : SHORTEST PATH

The problem is to

O find the shortest path from 1 to 6

O compute the length of the shortest path

We apply the Dijkstra algorithm and assign
iteratively a permanent label to each node

EXAMPLE : SHORTEST PATH

Steps 2,3 and $4: \mathscr{L}(2)=[0,3,5,4,7,12]$
label in iteration 2

EXAMPLE : SHORTEST PATH

Steps 2,3 and $4: \mathscr{L}(\mathbf{3})=[0,3,5,4,7,11]$

4

Steps 2,3 and $4: \mathscr{L}(4)=[0,3,5,4,7,10]$ label in iteration 4

$$
\mathfrak{L}(4)=[0,3,5,4,7,10]
$$

EXAMPLE : SHORTEST PATH

The shortest distance is 10 obtained with the path

$$
\{(1,4),(4,5),(5,6)\}
$$

CE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

PATH RETRACING

We retrace the path from n back to 1 using the scheme:
pick node j preceding node n as the node with the property
$\begin{gathered}\text { permanent label of } \\ \text { node } j\end{gathered}+\quad d_{j n}=\begin{aligned} & \text { shortest } \\ & \text { distance }\end{aligned}$
\square In the retracing scheme, certain nodes may be skipped

SHORTEST PATH BETWEEN ANY TWO NODES

The Dijkstra algorithm may be applied to compute
the shortest distance between any pair of nodes i, j
by taking i as the source node and j as the sink
node

We give as an example the following five - node network

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE : FIVE - NODE NETWORK

EXAMPLE : FIVE - NODE NETWORK

$$
\begin{aligned}
& \mathscr{L}(0)= {[0,3,4,8,10] } \\
& 0 \\
& \mathscr{L}(\mathbf{1})= {[0,3,4,7,10] } \\
& 1 \\
& \mathscr{L}(\mathbf{2})= {[0,3,4,6,8] } \\
& 2
\end{aligned}
$$

EXAMPLE : FIVE - NODE NETWORK

$$
\begin{array}{r}
\mathscr{L}(3)=[0,3,4,6,8] \\
3
\end{array}
$$

We retrace the path to get

$$
8=4+d_{24}
$$

node 24
and so the path is

$$
0 \rightarrow 2 \rightarrow 4
$$

EXAMPLE : FIVE - NODE NETWORK

APPPLICATION : EQUIPMENT REPLACEMENT PROBLEM

We consider the problem of old equipment replacement or its continued maintenance
\square As equipment ages, the level of maintenance required increases and, typically, results in increased operating costs
$\square O \& M$ costs may be reduced by replacing aging equipment; however, replacement requires additional capital investment and so higher fixed costs

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

APPPLICATION : EQUIPMENT REPLACEMENT PROBLEM

The problem is how often to replace equipment
so as to minimize the total costs given by

total	capital		O\&M
costs	costs	+	costs
	fixed		
			variable

EXAMPLE: EQUIPMENT REPLACEMENT

Equipment replacement is planned during the next 5 years
\square The cost elements are

$$
\begin{aligned}
p_{j}= & \text { purchase costs in year } \boldsymbol{j} \\
s_{j}= & \text { salvage value of original } \\
& \text { equipment after } \boldsymbol{j} \text { years of use } \\
c_{j}= & \begin{array}{l}
\text { O\&M costs in year } \boldsymbol{j} \text { of operation } \\
\text { of equipment with the property that }
\end{array}
\end{aligned}
$$

$$
\ldots c_{j}<c_{j+1}<c_{j+2}<\ldots
$$

We formulate this problem as a shortest route problem on a directed network

APPPLICATION : EQUIPMENT REPLACEMENT PROBLEM

The "distances" $d_{i j}$ are defined to be finite if $i<j$, i.e., year i precedes the year j, with

$$
d_{i j}=p_{i}-s_{j-i}+\sum_{\tau=1}^{j-i} c_{\tau} \quad j>i
$$ purchase salvage value O\&M costs price in after \boldsymbol{j} - $\boldsymbol{i} \quad$ for \boldsymbol{j} - \boldsymbol{i} years year i years of use of operation

APPPLICATION : EQUIPMENT REPLACEMENT PROBLEM

For example, if the purchase is made in year 1

$$
d_{16}=p_{1}-s_{5}+\sum_{\tau=1}^{5} c_{\tau}
$$

\square The solution is the shortest distance path from year 1 to year 6; if for example the path is

$$
\{(1,2),(2,3),(3,4),(4,5),(5,6)\}
$$

then the solution is interpreted as the replacement of the equipment each year with

$$
\text { total costs }=\sum_{\tau=1}^{5} p_{\tau}-5 s_{1}+5 c_{1}
$$

COMPACT BOOK STORAGE IN A LIBRARY

This problem concerns the storage of books in a limited size library
\square Books are stored according to their size, in terms of height and thickness, with books placed in groups of same or higher height; the set of book heights $\left\{H_{i}\right\}$ is arranged in ascending order with

$$
H_{1}<H_{2}<\ldots<H_{n}
$$

COMPACT BOOK STORAGE IN A LIBRARY

\square Any book of height H_{i} may be shelved on a shelf of height at least H_{i}, i.e., $\boldsymbol{H}_{i}, H_{i+1}, H_{i+2}, \ldots$
\square The length L_{i} of shelving required for height H_{i} is computed given the thickness of each book; the total shelf area required is $\sum_{i} H_{i} L_{i}$
O if only 1 height class [corresponding to the tallest book] exists, total shelf area required is the total length of the thickness of all books times the height of the tallest book

COMPACT BOOK STORAGE IN A LIBRARY

O if 2 or more height classes are considered, the total area required is less than the total area required for a single class

The costs of construction of shelf areas for each height class $\boldsymbol{H}_{\boldsymbol{i}}$ have the components
s_{i} fixed costs [independent of shelf area]
$c_{i} \quad$ variable costs / unit area

COMPACT BOOK STORAGE IN A LIBRARY

For example, if we consider the problem with 2
height classes $\boldsymbol{H}_{\boldsymbol{m}}$ and $\boldsymbol{H}_{\boldsymbol{n}}$ with $\boldsymbol{H}_{\boldsymbol{m}}<\boldsymbol{H}_{n}$
O all books of height $\leq \boldsymbol{H}_{\boldsymbol{m}}$ are shelved in shelf with the height H_{m}

O all the other books are shelved on the shelf with height H_{n}
\square The corresponding total costs are

$$
\left[s_{m}+c_{m} H_{m} \sum_{j=1}^{m} L_{j}\right]+\left[s_{n}+c_{n} H_{n} \sum_{j=m+1}^{n} L_{j}\right]
$$

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPACT BOOK STORAGE IN A LIBRARY

The problem is to find the set of shelf heights and lengths to minimize the total shelving costs
\square The solution approach is to use a network flow model for a network with

O the set of $(n+1)$ nodes

$$
\mathscr{N}=\{0,1,2, \ldots, n\}
$$

corresponding to the n book heights with
$1 \leftrightarrow H_{1}<H_{2}<\ldots<H_{n} \leftrightarrow n$
and the starting node with height 0

COMPACT BOOK STORAGE IN A LIBRARY

O directed arcs (i, j) only if $j>i$ resulting in a

$$
\text { total of } \frac{n(n+1)}{2} \text { arcs }
$$

O "distance" $d_{i j}$ on each arc given by

$$
d_{i j}= \begin{cases}s_{j}+c_{j} H_{j} \sum_{k=i+1}^{j} L_{k} & \text { if } j>i \\ \infty & \\ \text { otherwise }\end{cases}
$$

COMPACT BOOK STORAGE IN A LIBRARY

\square For this network, we solve the shortest route
problem for the specified "distances" $d_{i j}$
\square Suppose that for a problem with $n=17$, we determine the optimal trajectory to be

$$
\{(0,7),(7,9),(9,15),(15,17)\}
$$

the interpretation of this solution is :

COMPACT BOOK STORAGE IN A LIBRARY

O store all the books of height $\leq H_{7}$ on the shelf of height H_{7}

O store all the books of height $\leq \boldsymbol{H}_{9}$ but $>\boldsymbol{H}_{7}$ on the shelf of height \boldsymbol{H}_{9}

O store all the books of height $\leq \boldsymbol{H}_{15}$ but $>\boldsymbol{H}_{9}$ on the shelf of height $\boldsymbol{H}_{\mathbf{1 5}}$

O store all the books of height $\leq \boldsymbol{H}_{17}$ but $>\boldsymbol{H}_{15}$ on the shelf of height \boldsymbol{H}_{17}

