ECE 307 - Techniques for Engineering Decisions

Lecture 5. Networks and Flows

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

NETWORKS AND FLOWS

A network is a system of lines or channels or branches that connect different points
\square Examples abound virtually in all aspects of life:
O electrical systems;
O communication networks;
O airline webs;
O local area networks; and
O distribution systems
ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NETWORKS AND FLOWS

\square The network structure is also common to many other systems that at first glance are not necessarily viewed as networks

O distribution of products through a system consisting of manufacturing plants, warehouses and retail outlets

O matching problems such as work to people, tasks to machines and computer dating

NETWORKS AND FLOWS

O river systems with pondage for electricity generation

O mail delivery networks
O freight delivery networks
O project management of multiple tasks in a large undertaking such as a major construction project or a space flight
\square We consider a broad range of network and network flow problems

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

THE TRANSPORTATION PROBLEM

The basic idea of the transportation problem is illustrated with the problem of the distribution of a specified homogeneous product from several warehouses to a number of localities at least cost
\square We consider a system with m warehouses, n markets and links between them with the specified costs of transportation

THE TRANSPORTATION PROBLEM

THE TRANSPORTATION PROBLEM

O all the supply comes from the m warehouses; we associate the index $i=1,2, \ldots, m$ with a warehouse

O all the demand is at the n markets; we use the index $j=1,2, \ldots, n$ with a market

O shipping costs $\boldsymbol{c}_{i j}$ for each unit from the warehouse i to the market j and we set $c_{i j}=\infty$ whenever warehouse i cannot ship to market j

THE TRANSPORTATION PROBLEM

The transportation problem is to determine the optimal shipping schedule that minimizes shipping costs from the set of m warehouses to the set of n markets by determining the quantities shipped from each warehouse i to each market j, for

$$
i=1,2, \ldots, m, j=1,2, \ldots, n
$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

\square The decision variables are defined to be

$$
\begin{gathered}
x_{i j}=\text { quantity shipped from warehouse } i \text { to market } j, \\
\qquad i=1,2, \ldots, m, \quad j=1,2, \ldots, n
\end{gathered}
$$

The objective function is

$$
\min \quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

The constraints are:

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j} \leq a_{i} \quad i=1,2, \ldots, m \\
& \sum_{i=1}^{m} x_{i j} \geq b_{j} \quad j=1,2, \ldots, n \\
& x_{i j} \geq 0 \quad i=1,2, \ldots, m, \quad j=1,2, \ldots, n
\end{aligned}
$$

LP FORMULATION OF THE TRANSPORTATION PROBLEM

\square Note that feasibility requires that

$$
\sum_{i=1}^{m} a_{i} \geq \sum_{j=1}^{n} b_{j}
$$

When

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

all the available supply at the m warehouses is shipped to meet all the demands of the n markets; this is known as the standard transportation problem

STANDARD TRANSPORTATION PROBLEM (STP)

$$
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

s.t.

$$
\left.\begin{array}{rl}
\sum_{j=1}^{n} x_{i j} & =a_{i} \\
\sum_{i=1}^{m} x_{i j} & =b_{j} \\
x_{i j} & \geq 0
\end{array}\right\} \quad \begin{aligned}
& i=1, \ldots, m
\end{aligned} \quad \begin{aligned}
& j=1, \ldots, n
\end{aligned}
$$

STANDARD TRANSPORTATION PROBLEM (STP)

\square The standard transportation problem has
O $m \boldsymbol{n}$ variables $\boldsymbol{x}_{i j}$
O $\boldsymbol{m}+\boldsymbol{n}$ equality constraints
\square However, since

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}=\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j},
$$

there are at most ($m+n-1$) independent constraints and, consequently, at most $(m+n-1)$ independent variables $x_{i j}$ (basic variables)

TRANSPORTATION PROBLEM SETUP

market j	M_{1}	M_{2}	M_{3}	M_{4}	supplies
W_{1}	$\begin{aligned} & x_{11} \\ & \qquad c_{11} \end{aligned}$	$\begin{aligned} & x_{12} \\ & \qquad c_{12} \end{aligned}$	$\begin{aligned} & x_{13} \\ & \qquad c_{13} \end{aligned}$	$\begin{aligned} & x_{14} \\ & \quad c_{14} \end{aligned}$	a_{1}
W_{2}	x_{21}	x_{22}			a_{2}
W_{3}	x_{31}	x_{32}	x_{33}	x_{34}	a_{3}
demands	b_{1}	b_{2}	b_{3}	b_{4}	$\sum a_{i}=\sum b_{j}$

ECE 307© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TRANSPORTATION PROBLEM NUMERICAL EXAMPLE

market j	M_{1}	M_{2}	M_{3}	M_{4}	a_{i}
W_{1}	2	2			3
					7
${ }_{2}$	10	8	5	4	
W_{3}					5
b_{j}	4	3	4	4	

THE LEAST - COST RULE PROCEDURE

The LCRP generates an initial basic feasible solution
which has at most ($m+n-1$) positive-valued basic
variables

The principal idea of the scheme is to select, at each step, the variable $x_{i j}$ with the lowest shipping costs $c_{i j}$ as the next basic variable to enter the basis

ECE 307© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

APPLICATION OF THE LEAST - COST RULE
 c c_{14} is the lowest $c_{i j}$ and we select x_{14} as a basic variable

\square We choose x_{14} as large as possible without violating any constraints:

$$
\min \left\{a_{1}, b_{4}\right\}=\min \{3,4\}=3
$$

\square We set $x_{14}=3$ and set

$$
x_{11}=x_{12}=x_{13}=0
$$

We delete row 1 from any further consideration since all the supplies from W_{1} are exhausted

APPLICATION OF THE LEAST - COST RULE					
	M_{1}	M_{2}	M_{3}	M_{4}	\boldsymbol{a}_{i}
W_{1}	2	2	2	(3) $\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$	3
W_{2}	10	8	5	4	7
W_{3}	7	6	6	8	5
b_{j}	4	3	4	4	

APPLICATION OF THE LEAST - COST RULE

\square The remaining demand at M_{4} is

$$
4-3=1
$$

which is the value for the modified demand at M_{4}

We again apply the criterion selection to the reduced
tableau: since c_{24} is the lowest-valued $c_{i j}$, we select x_{24} as the next basic variable

APPLICATION OF THE LEAST - COST

 RULEWe wish to set x_{24} as large as possible without violating any constraints:

$$
\min \left\{a_{2}, b_{4}\right\}=\min \{7,1\}=1
$$

and we set $x_{24}=1$ and since there is no more demand at M_{4}

$$
x_{34}=0
$$

We delete column 4 from any further consideration since all the demand at M_{4} is met

APPLICATION OF THE LEAST - COST RULE

\square The remaining supply at W_{2} is

$$
7-1=6
$$

which is the value for the modified supply at W_{2}
\square We repeat these steps until we find the values of the $(m+n-1)$ nonzero basic variables to obtain a basic feasible solution

In the reduced tableau,

APPLICATION OF THE LEAST - COST RULE				
	M_{1}	M_{2}	M_{3}	$\boldsymbol{a}_{\boldsymbol{i}}$
W_{2}	10	8	(4) 5	6
W_{3}	7	6		5
b_{j}	4	3	4	

APPLICATION OF THE LEAST - COST RULE

pick x_{23} to enter the basis as the next basic variable
set

$$
x_{23}=\min \{\mathbf{6}, \mathbf{4}\}=4
$$

and set

$$
x_{33}=0
$$

O eliminate column 3 and reduce the supply at W_{2} to $6-4=2$
For the reduced tableau

APPLICATION OF THE LEAST - COST RULE

O pick x_{32} to enter the basis
O set

$$
x_{32}=\min \{\mathbf{3}, \mathbf{5}\}=3
$$

and set

$$
x_{22}=0
$$

O eliminate column 2 in the reduced tableau and reduce the supply at W_{3} to $5-3=2$
\square The last reduced tableau is

APPLICATION OF THE LEAST - COST					
RULE					

APPLICATION OF THE LEAST - COST RULE

pick x_{31} to enter the basis
O set

$$
x_{31}=\min \{2,4\}=2
$$

O reduce the demand at M_{1} to

$$
4-2=2
$$

the value of

$$
x_{21}=2
$$

is obtained by default

INITIAL BASIC FEASIBLE SOLUTION

	M_{1}	M_{2}	M_{3}	M_{4}	\boldsymbol{a}_{i}
W_{1}	2	2	2		3
W_{2}	$\begin{aligned} & 2 \\ & 10 \\ & \hline \end{aligned}$	8			7
W_{3}	$\begin{aligned} & 2 \\ & 7 \end{aligned}$		6	8	5
b_{j}	4	3	4	4	

APPLICATION OF THE LEAST - COST RULE

\square The feasible solution involves only the basic
variables and results in shipment costs of

$$
\begin{aligned}
\sum_{i=1}^{3} \sum_{j=1}^{4} c_{i j} x_{i j} & =1 \cdot 3+4 \cdot 1+5 \cdot 4+6 \cdot 3+7 \cdot 2+10 \cdot 2 \\
& =79
\end{aligned}
$$

THE STP

The primal problem is

$$
\begin{array}{ll}
\min Z= & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { s.t. } \\
\qquad \begin{aligned}
u_{i} & \leftrightarrow \\
v_{j} & \leftrightarrow x_{i j}=a_{i} \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} x_{i j}=b_{j} \quad j=1, \ldots, n \\
& x_{i j} \geq 0
\end{aligned}
\end{array}
$$

THE STP

The dual problem is

$$
\max W=\sum_{i=1}^{m} a_{i} u_{i}+\sum_{j=1}^{n} b_{j} v_{j}
$$

s.t.

$$
\begin{array}{rl}
x_{i j} \leftrightarrow \quad u_{i}+v_{j} \leq c_{i j} & i=1, \ldots, m \tag{D}\\
& j=1, \ldots, n
\end{array}
$$

THE STP

The complementary slackness conditions for (D) are

$$
\begin{array}{ll}
x_{i j}^{*}\left[u_{i}^{*}+v_{j}^{*}-c_{i j}\right]=0 & i=1, \ldots, m \\
& j=1, \ldots, n
\end{array}
$$

\square Due to the equalities in (P), the complementary
slackness conditions in (P) are unable to provide any
additional or useful information

THE TRANSPORTATION PROBLEM

\square The complementary slackness conditions obtain

$$
\begin{aligned}
& x_{i j}^{*}>0 \Rightarrow u_{i}^{*}+v_{j}^{*}=c_{i j} \\
& u_{i}^{*}+v_{j}^{*}<c_{i j} \Rightarrow x_{i j}^{*}=0
\end{aligned}
$$

We make use of these complementary slackness
conditions to develop the so-called $u-v$ method for solving the standard transportation problem

THE $u-v$ METHOD

The $u-v$ method starts with a basic feasible solution for the primal problem, determines the corresponding dual variables (as if the basic feasible solution were optimal) and uses the duals to determine the adjacent basic feasible solution; the iteration process continues until the optimality conditions are satisfied

For a basic feasible solution, we find the dual
variable u_{i} and v_{j} using the complementary

slackness conditions

$$
u_{i}+v_{j}=c_{i j} \quad \forall \text { basic } x_{i j}
$$

with u_{i} and v_{j} being unrestricted in sign

THE $u-v$ METHOD

We compute

$$
\tilde{c}_{i j}=c_{i j}-\left(u_{i}+v_{j}\right) \quad \forall \text { nonbasic } x_{i j}
$$

\square This step is the analogue of computing $\underline{\tilde{c}}^{T}$ in the simplex tableau approach (relative cost reduction vector)
\square The complementary-slackness-based optimality test is performed :
if $\quad \tilde{c}_{i j} \geq 0 \quad \forall$ nonbasic $x_{i j}\left[x_{i j}=0\right]$, then the basic feasible solution is optimal

THE $u-v$ METHOD

\square Else, we consider each nonbasic variable $x_{\bar{p} \bar{q}}$ that satisfies

$$
\tilde{c}_{\bar{p} \bar{q}}=c_{\bar{p} \bar{q}}-\left(u_{\bar{p}}+v_{\bar{q}}\right)<0
$$

and determine

$$
\tilde{c}_{p q}=\min _{\bar{p} \frac{\min }{\underline{q}} x_{\bar{p} \bar{q}}}\left\{\tilde{c}_{\bar{p} \bar{q}}\right\}
$$

is nonbasic
and $\tilde{c}_{\bar{p} \bar{q}}<0$
We, then, select $x_{p q}$ to become the next basic variable and repeat the process for this new basic feasible solution; we continue the process until the optimality conditions are met

STP NUMERICAL EXAMPLE

We apply the $u-v$ scheme to the example
previously discussed

The basic step from the dual formulation is to
require

$$
\left(u_{i}+v_{j}\right)=c_{i j} \quad \forall \text { nonbasic } x_{i j}
$$

STP NUMERICAL EXAMPLE

We start with the basic feasible solution and apply the complementary slackness conditions

$$
\begin{aligned}
& u_{1}+v_{4}=1=c_{14} \\
& u_{2}+v_{4}=4=c_{24} \\
& u_{2}+v_{3}=5=c_{23} \\
& u_{3}+v_{2}=6=c_{32} \\
& u_{3}+v_{1}=7=c_{31} \\
& u_{2}+v_{1}=10=c_{21}
\end{aligned}
$$

We have 6 equations in 7 unknowns and so there is an infinite number of solutions

STP NUMERICAL EXAMPLE

Arbitrarily, we set the variable

$$
v_{4}=0
$$

and solve the equations above to obtain

$$
\begin{aligned}
& u_{1}=1 \\
& u_{2}=4 \\
& v_{3}=1 \\
& v_{1}=6 \\
& u_{3}=1 \\
& v_{2}=5
\end{aligned}
$$

STP NUMERICAL EXAMPLE

\square The $\tilde{c}_{i j}$ for the nonbasic variables are

$$
\begin{aligned}
& x_{11}: \tilde{c}_{11}=c_{11}-\left(u_{1}+v_{1}\right)=2-(1+6)=-5 \\
& x_{12}: \tilde{c}_{12}=c_{12}-\left(u_{1}+v_{2}\right)=2-(1+5)=-4 \\
& x_{13}: \tilde{c}_{13}=c_{13}-\left(u_{1}+v_{3}\right)=2-(1+1)=0
\end{aligned}
$$

$$
x_{34}: \tilde{c}_{34}=c_{34}-\left(u_{3}+v_{4}\right)=8-(1+0)=7
$$

$$
x_{33}: \tilde{c}_{33}=c_{33}-\left(u_{3}+v_{3}\right)=6-(1+1)=4
$$

STP NUMERICAL EXAMPLE

We determine

$$
\tilde{c}_{p q}=\min _{\substack{\overline{p q} \rightarrow x_{p \bar{q}} \\ \text { is nonbasic }}}=\tilde{c}_{11}=-\mathbf{5}
$$

and consequently we pick the nonbasic variable \boldsymbol{x}_{11}
to enter the basis

We determine the maximal value of x_{11} and set

$$
x_{11}=\theta \text { and make use of the tableau }
$$

STP NUMERICAL EXAMPLE

market j $w / h i$ $W_{1}$$M_{1}$	M_{2}	M_{3}	M_{4}	a_{i}	
W_{2}	$2-\theta$		4	$1+\theta$	7
W_{3}	2	3			5
b_{j}	4	3	4	4	

STP NUMERICAL EXAMPLE

Therefore,

$$
\theta=\min \{2,3\}=2
$$

\square Consequently, x_{21} becomes 0 and leaves the basis
We obtain the basic feasible solution

$$
x_{14}=1, x_{11}=2, x_{31}=2, x_{32}=3, x_{23}=4, x_{24}=3
$$

and repeat to solve the $u-v$ problem for this adjacent basic feasible solution

STP NUMERICAL EXAMPLE					
$\underbrace{\text { market } j}_{w / h i}$	$v_{1}=2$	$v_{2}=1$	$v_{3}=2$	$v_{4}=1$	a_{i}
$u_{1}=0$	(2) 2	2	2	(1)	3
$u_{2}=3$	10	8	(4) 5	(3) 4	7
$u_{3}=5$	(2) 7	(3) 6	6	8	5
b_{j}	4	3	4	4	

STP NUMERICAL EXAMPLE

The complementary slackness conditions of the nonzero valued basic variables obtain

$$
\begin{aligned}
& u_{1}+v_{1}=c_{11}=2 \\
& u_{1}+v_{4}=c_{14}=1 \\
& u_{2}+v_{3}=c_{23}=5 \\
& u_{2}+v_{4}=c_{24}=4 \\
& u_{3}+v_{1}=c_{31}=7 \\
& u_{3}+v_{2}=c_{32}=6
\end{aligned}
$$

STP NUMERICAL EXAMPLE

\square We set arbitrarily

$$
u_{1}=0
$$

and therefore

$$
\begin{array}{ll}
v_{3}=2 & v_{1}=2 \\
u_{3}=5 & u_{3}=5 \\
v_{2}=1 & v_{2}=0
\end{array}
$$

\square We compute $\tilde{c}_{i j}$ for each nonbasic variable $x_{i j}$

STP NUMERICAL EXAMPLE

	M_{1}	M_{2}	M_{3}	M_{4}	a_{i}
W_{1}	$2+\theta$			$1-\theta$	3
W_{2}			4- θ	$3+\theta$	7
W_{3}	$2-\theta$	3	θ		5
b_{j}	4	3	4	4	

STP NUMERICAL EXAMPLE

\square The limiting value of θ is

$$
\theta=\min \{2,4,1\}=1
$$

Consequently, x_{14} leaves the basis and x_{33}
enters the basis with the value 1
\square We obtain the adjacent basic feasible solution in

STP NUMERICAL EXAMPLE

$\underset{w / h i}{m a r k e t ~ j}$	$v_{1}=2$	$v_{2}=1$	$v_{3}=1$	$v_{4}=0$	a_{i}
$u_{1}=0$	(3)	2	2	1	3
$u_{2}=4$	10	8	(3) 5	(4)	7
$u_{3}=5$	(1) ${ }^{7}$	(3)	(1)	8	5
b_{j}	4	3	4	4	

STP NUMERICAL EXAMPLE

We evaluate $\tilde{\boldsymbol{c}}_{i j}$ for each nonbasic variable; $\tilde{c}_{i j} \geq 0$ and so we have an optimal solution with shipping 3 from W_{1} to M_{1} with costs 6 shipping 1 from W_{3} to M_{1} with costs 7 shipping 3 from W_{3} to M_{2} with costs 18 shipping 1 from W_{3} to M_{3} with costs 6 shipping 3 from W_{2} to M_{3} with costs 15 shipping 4 from W_{2} to M_{4} with costs 16 and resulting in the least total costs of 68

ELECTRICITY DISTRIBUTION EXAMPLE

\square We consider an electric utility system in which

3 power plants are used to supply the electricity demand of 4 cities

The supplies available from the 3 plants are given

The demands of the 4 cities are specified
\square The costs of supply per $10^{6} \mathbf{k W h}$ are given

ELECTRICITY COSTS						
		city				supplies ($10^{6} \mathrm{kWh}$)
		1	2	3	4	
plant	1	8	6	10	9	35
	2	9	12	13	7	50
	3	14	9	16		40
$\begin{aligned} & \hline \text { demands } \\ & \left(10^{6} \mathrm{kWh}\right) \end{aligned}$		45	20	30	30	125

ELECTRICITY ALLOCATION EXAMPLE

\square We note that

$$
\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{4} b_{j}
$$

and so we have a balanced transportation problem

We make use of the $L C R P$ to construct a basic feasible solution

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

\square And we set

$$
\begin{aligned}
& x_{34}=30 \\
& x_{14}=0 \\
& x_{24}=0
\end{aligned}
$$

\square We compute the remaining supply at plant 3 and remove column corresponding to city $\mathbf{4}$ from further consideration

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and so we set

$$
\begin{aligned}
& x_{12}=20 \\
& x_{22}=0 \\
& x_{32}=0
\end{aligned}
$$

\square We recompute the supply remaining at plant 1 and remove column corresponding to city 2
\square The new reduced system obtains

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city				$\begin{aligned} & \text { supplies } \\ & \left(10^{6} \mathrm{kWh}\right) \end{aligned}$
		1		3		
plant	1	15	8		10	15
	2					50
	3					10
$\begin{gathered} \text { demands } \\ \left(10^{6} \mathrm{kWh}\right) \end{gathered}$		30		30		

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and therefore we set

$$
\begin{gathered}
x_{11}=15 \\
x_{13}=0
\end{gathered}
$$

and remove the row corresponding to plant 1 from
further consideration since its supply is exhausted

The operation is repeated on the reduced system

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

and therefore we set

$$
\begin{aligned}
& x_{21}=30 \\
& x_{31}=0
\end{aligned}
$$

and remove the column corresponding to city 1 from further consideration

We are finally left with

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

which allows us to set

$$
\begin{aligned}
& x_{23}=20 \\
& x_{33}=10
\end{aligned}
$$

\square The basic feasible solution has the costs
$Z=30 \cdot 5+20 \cdot 6+15 \cdot 8+30 \cdot 9+20 \cdot 13+10 \cdot 16=1,080$
\square We improve this solution by using the $u-v$ scheme
The first tableau corresponding to the initial basic feasible solution is:

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION

		city				$\begin{aligned} & \text { supplies } \\ & \left(10^{6} \mathrm{kWh}\right) \end{aligned}$
		1	2	3	4	
	1	(15)	(20)			35
	2	33		(20)		50
	3			(10)	30	40
		45	20	30	30	

STP NUMERICAL EXAMPLE

We compute, the possible improvements at each nonbasic variable:

$$
\begin{aligned}
& \tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=14-(4+8)=2 \\
& \tilde{c}_{22}=c_{22}-\left(u_{2}+v_{2}\right)=12-(1+6)=5 \\
& \tilde{c}_{32}=c_{32}-\left(u_{3}+v_{2}\right)=9-(4+6)=-1 \\
& \tilde{c}_{13}=c_{13}-\left(u_{1}+v_{3}\right)=10-(0+12)=-2 \\
& \tilde{c}_{14}=c_{14}-\left(u_{1}+v_{4}\right)=9-(0+1)=8 \\
& \tilde{c}_{24}=c_{24}-\left(u_{2}+v_{4}\right)=7-(1+1) \\
& \text { improvement possible }
\end{aligned}
$$

STP NUMERICAL EXAMPLE

We bring x_{13} into the basis and determine the value of θ using the tableau structure

From the tableau we conclude that

$$
\theta=\min \{15,20\}=15
$$

and therefore x_{11} leaves the basis to determine the adjacent basic feasible solution given in the table

STP NUMERICAL EXAMPLE

clants	1	2	3	4	a_{i}
1	$15-\theta$	20	θ		35
2	$30+\theta$		$20-\theta$		50
3			10	30	40
b_{j}	45	20	30	30	

STP NUMERICAL EXAMPLE

The adjacent basic feasible solution is

$$
x_{21}=45, \quad x_{12}=20, \quad x_{13}=15, \quad x_{23}=5, \quad x_{33}=10, x_{34}=30
$$

and the new value of Z is

$$
\begin{aligned}
Z & =20 \cdot 6+15 \cdot 10+45 \cdot 9+5 \cdot 13+10 \cdot 16+30 \cdot 5 \\
& =1050<1080
\end{aligned}
$$

\square We again pursue a $u-v$ improvement strategy by starting with the tableau

STP NUMERICAL EXAMPLE

	$v_{1}=6$	$\nu_{2}=6$	$v_{3}=10$	$v_{4}=-1$	supplies
$u_{1}=0$		20	(15) 10		35
$u_{2}=3$	(45) 9		(5) 13		50
$u_{3}=6$			10 16	30 5	40
demands	45	20	30	30	

STANDARD TRANSPORTATION EXAMPLE

\square The complementary slackness conditions obtain the possible improvements

$$
\begin{aligned}
& \tilde{c}_{11}=c_{11}-\left(u_{1}+v_{1}\right)=8-(0+6)=2 \\
& \tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=14-(6+6)=2 \\
& \tilde{c}_{22}=c_{22}-\left(u_{2}+v_{2}\right)=12-(3+6)=3 \\
& \tilde{c}_{32}=c_{32}-\left(u_{3}+v_{2}\right)=9-(6+6)=-3 \\
& \tilde{c}_{14}=c_{14}-\left(u_{1}+v_{4}\right)=9-(0-1)=10 \\
& \tilde{c}_{24}=c_{24}-\left(u_{2}+v_{4}\right)=7-(3-1)=5 \\
& \text { only possible improvement }
\end{aligned}
$$

We bring x_{32} into the basis and with its value θ determined from

STP NUMERICAL EXAMPLE					
plants	1	2	3	4	a_{i}
1		$20-\theta$	$15+\theta$		35
2	45		5		50
3		θ	$10-\theta$	30	40
b_{j}	45	20	30	30	

STP NUMERICAL EXAMPLE

and so

$$
\theta=\min \{10,20\}=10
$$

\square The adjacent basic feasible solution is, then,

$$
\begin{array}{lll}
x_{21}=45 & x_{12}=10 & x_{32}=10 \\
x_{13}=25 & x_{23}=5 & x_{34}=30
\end{array}
$$

and the value of Z becomes

$$
Z=45 \cdot 9+10 \cdot 6+10 \cdot 9+25 \cdot 10+5 \cdot 13+30 \cdot 5=1,02
$$

\square You need to prove, using complementary slackness conditions, that this is the true optimum

NONSTANDARD TRANSPORTATION PROBLEM

The nonstandard transportation problem arises when supply and demand are unbalanced: either supply exceeds demand or vice versa
\square We solve by transforming the nonstandard problem into a standard one
\square The approach is to create a fictitious entity - a market to absorb the surplus supply or a warehouse for the supply deficit - and solve the problem with the fictitious entity as a balanced transportation problem

NONSTANDARD TRANSPORTATION PROBLEM

\square For the case

$$
\underbrace{\sum_{i=1}^{m} a_{i}>\underbrace{\sum_{j}^{n} b_{j}}_{\substack{i=1}},}_{\text {supply }}
$$

we create the fictitious market M_{n+1} to absorb all the excess supply $\left(\sum_{i=1}^{m} a_{i}-\sum_{j=1}^{n} b_{j}\right)$; we set $c_{i, n+1}=0$, $\forall i=1,2, \ldots, m$ since M_{n+1} is fictitious
\square The problem is then in standard form with $j=1,2$,
$\ldots, n, n+1$, for the augmented number of markets

NONSTANDARD TRANSPORTATION PROBLEM

- For the case

$$
\underset{\text { demand }}{\sum_{j=1}^{n} b_{j}>\sum_{i=1}^{m} a_{i}}
$$

the problem is not, in effect, feasible since all the demands cannot be met and therefore the leastcost shipping schedule is that which will supply as much as possible of the demands of the markets at the lowest cost

NONSTANDARD TRANSPORTATION PROBLEM

\square For the excess demand case, we introduce the fictitious warehouse W_{m+1} to supply the shortage $\left[\sum_{j=1}^{n} b_{j}-\sum_{i=1}^{m} a_{i}\right]$ and we set $c_{m+1, j}=0, j=1,2, \ldots, n$
\square The problem is in standard form with $i=1, \ldots$, $m+1$ (number of warehouses augmented by 1)

NONSTANDARD TRANSPORTATION PROBLEM

Note that the variable $x_{m+1, j}$ is the shortage at market \boldsymbol{j} and is the shortfall in the demand $\boldsymbol{b}_{\boldsymbol{j}}$ experienced by each market M_{j} due to inadequate supplies at warehouses $i=1,2, \ldots, m$
\square At each market $\boldsymbol{j}, \boldsymbol{x}_{m+1, j}$ provides the measure of the infeasibility of the problem

EXAMPLE: CANNING OPERATIONS SCHEDULING

This problem is concerned with the scheduling the purchases of 2 plants $-A$ and B - of the raw supplies from 3 growers with given availability / price

grower	availability (ton)	price (\$/ton)
Smith	200	10
Jones	300	9
Richard	400	8

EXAMPLE: CANNING OPERATIONS SCHEDULING

The shipping costs in $\$ /$ ton are given by

to	plant	
	A	B
Srom	2	2.5
Jones	1	1.5
Richard	5	3

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square The plants' capacity limits and labor costs are

plant	A	B
capacity (ton $)$	450	550
labor costs $(\$ /$ ton $)$	25	20

EXAMPLE: CANNING OPERATIONS SCHEDULING

The competitive selling price for canned goods is $50 \$ /$ ton and the company can sell all it produces
\square The problem is to determine the purchase schedule that produces the maximum profits Note that this is an unbalanced problem since

$$
\begin{array}{ll}
\text { supply }=200+300+400 & =900 \text { tons } \\
\text { demand } & =450+550
\end{array}
$$

\square The decision variables are the amounts bought from each grower and shipped to each plant

EXAMPLE: CANNING OPERATIONS SCHEDULING

\square The objective is formulated as

$$
\begin{aligned}
\max Z & =[\underbrace{50-25-10-2}_{13}] x_{S A}+[\underbrace{50-25-9-1}_{15}] x_{J A} \\
& +[\underbrace{50-25-8-5}_{12}] x_{R A}+[\underbrace{50-20-10-2.5}_{17.5}] x_{S B} \\
& +[\underbrace{50-20-9-1.5}_{19.5}] x_{J B}+[\underbrace{50-20-8-3}_{19}] x_{R B}
\end{aligned}
$$

EXAMPLE: CANNING OPERATIONS SCHEDULING

The supply constraints are

$$
\begin{aligned}
& x_{S A}+x_{S B} \leq 200 \\
& x_{J A}+x_{J B} \leq 300 \\
& x_{R A}+x_{R B} \leq 400
\end{aligned}
$$

\square The demand constraints are

$$
\begin{aligned}
& \boldsymbol{x}_{S A}+\boldsymbol{x}_{J A}+\boldsymbol{x}_{R A} \leq \mathbf{4 5 0} \\
& \boldsymbol{x}_{S B}+\boldsymbol{x}_{J A}+\boldsymbol{x}_{R B} \leq \mathbf{5 5 0}
\end{aligned}
$$

EXAMPLE: CANNING OPERATIONS SCHEDULING

Clearly, all decision variables are nonnegative
The unbalanced nature of the problem requires the introduction of a fictitious grower F, who is able to supply 100 tons of the supply shortage; the addition of F allows the nonstandard problem to be restated as a standard transportation problem

We set up the $S T P$ tableau

EXAMPLE: CANNING OPERATIONS SCHEDULING

	A	B	supply
S	13	17.5	200
J	15	19.5	300
\boldsymbol{R}	12	19	400
F	0	0	100
demand	450	550	1,000

EXAMPLE: CANNING OPERATIONS SCHEDULING

In this problem, the objective is a maximization rather than a minimization
\square We therefore recast the "mechanics" of the $u-v$ scheme for the maximization problem
\square As a homework exercise, show that the duality complementary slackness conditions allow us to change the $u-v$ algorithm in the following way:

EXAMPLE: CANNING OPERATIONS SCHEDULING

O the selection of the nonbasic variable $x_{i j}$ to enter the basis is from those $x_{i j}$ whose corresponding

$$
c_{i j}>u_{i}+v_{j}
$$

and we focus on and evaluate all $\tilde{c}_{i j}>0$ for which $x_{i j}$ is a candidate to enter the basis
O we pick $x_{p q}$ corresponding to

ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE SOLUTION

EXAMPLE SOLUTION

We construct the $u-v$ relations for this solution

$$
\begin{array}{ll}
u_{1}+v_{1}=13 & u_{2}+v_{2}=19.5 \\
u_{2}+v_{1}=15 & u_{3}+v_{2}=19 \\
& u_{4}+v_{2}=0
\end{array}
$$

\square We arbitrarily set $u_{1}=0$ and compute

$$
v_{1}=13, u_{2}=2, v_{2}=17.5, u_{3}=1.5, u_{4}=-17.5
$$

EXAMPLE SOLUTION

\square We evaluate the $\tilde{c}_{i j}$ corresponding to the nonbasic variables

$$
\begin{aligned}
& \tilde{c}_{31}=c_{31}-\left(u_{3}+v_{1}\right)=12-(1.5+13)=-2.5 \\
& \tilde{c}_{41}=c_{41}-\left(u_{4}+v_{1}\right)=0-(-17.5+13)=4.5 \\
& \tilde{c}_{12}=c_{12}-\left(u_{1}+v_{2}\right)=17.5-(0+17.5)=0
\end{aligned}
$$

single possible improvement
Thus, x_{41} enters the basis and we determine θ

EXAMPLE SOLUTION			
prower int	A	B	supply
S	200		200
J	$250-\theta$ $\mid 15$	$\begin{array}{r} \mathbf{5 0}+\theta \\ \quad \mid 19.5 \end{array}$	300
R		$\begin{gathered} 400 \\ \quad 19 \\ \hline \end{gathered}$	400
F	${ }^{\theta}$	100- $\begin{array}{r}\text { - } \\ \hline 1 \\ \hline 0\end{array}$	100
demand	450	550	

EXAMPLE SOLUTION

It follows that

$$
\theta=\min \{250,100\}=100
$$

and so the adjacent basic feasible solution is
$x_{11}=200, x_{21}=150, x_{41}=100, x_{22}=150, x_{32}=400$
\square We repeat the $u-v$ procedure with the new basic variables and solve

EXAMPLE SOLUTION

$$
\begin{array}{ll}
u_{1}+v_{1}=13 & u_{2}+v_{2}=19.5 \\
u_{2}+v_{1}=15 & u_{3}+v_{2}=19 \\
& u_{4}+v_{1}=0
\end{array}
$$

\square We solve by arbitrarily setting $u_{1}=0$ and obtain

$$
v_{1}=13, u_{2}=2, v_{2}=17.5, u_{3}=1.5, u_{4}=-13
$$

EXAMPLE SOLUTION

We compute the $\tilde{c}_{i j}$ for the nonbasic variables

$$
\begin{aligned}
& \tilde{c}_{12}=17.5-(0+17.5)=0 \\
& \tilde{c}_{31}=12-(1.5+13)=-2.5 \\
& \tilde{c}_{42}=0-(-13+17.5)=-4.5
\end{aligned}
$$

EXAMPLE SOLUTION

\square Since each $\tilde{c}_{i j}$ is ≤ 0, no improvement in the
maximization is possible and so the maximum
profits are
$Z=(200) 13+(150) 15+(100) 0+(150) 19.5+(400) 19$
$=15,375 \$$

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

The problem is concerned with the weekly production scheduling over a 4 - week period

O production costs for each item

first two weeks	$\$ 10$
last two weeks	$\$ 15$

O demands that need to be met are

week	1	2	3	4
demand	300	700	900	800

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

O weekly plant capacity is 700
O overtime is possible for weeks 2 and 3 with

- the production of additional 200 units
- additional cost per unit of \$5

O \$3 for weekly storage of unsold production
O the objective is to minimize the total costs for the
4-week schedule
\square The decision variables are
$x_{i j}=$ production in week \boldsymbol{i} for use in week \boldsymbol{j} market

ASSIGNMENT PROBLEM

We are given
n machines
$M_{1}, M_{2}, \ldots, M_{n} \leftrightarrow i$
n jobs
$J_{1}, J_{2}, \ldots, J_{n} \leftrightarrow j$
$c_{i j}=$ cost of doing job j on machine i
$c_{i j}=M$ if job j cannot be done on machine i
each machine can only do one job and we wish to determine the optimal match, i.e., the assignment with the lowest total costs of doing each job \boldsymbol{j} on the n available machines

ASSIGNMENT PROBLEM

\square The brute force approach is simply enumeration:
consider $n=10$ and there are $3,628,800$ possible choices!

We can, however, introduce categorical decision variables

$$
x_{i j}= \begin{cases}1 & j o b j \text { is assigned to machine } i \\ 0 & \text { otherwise }\end{cases}
$$

ASSIGNMENT PROBLEM

and the problem constraints can be stated as $\sum_{j=1}^{n} x_{i j}=1 \quad \forall i$ each machine does exactly 1 job $\sum_{i=1}^{n} x_{i j}=1 \quad \forall j$ each job is assigned to 1 machine
\square The objective, then, is

$$
\min Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

ASSIGNMENT PROBLEM

\square This assignment problem is an STP with

$$
\begin{gathered}
a_{i}=1 \quad \forall i \\
b_{j}=1 \quad \forall j \\
\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{n} b_{j}
\end{gathered}
$$

NONSTANDARD ASSIGNMENT PROBLEM

\square Suppose we have m machines and n jobs with $m \neq n$

We may convert this into an equivalent standard assignment problem with equal number of machines and jobs
\square The conversion requires the introduction of either fictitious jobs or fictitious machines

NONSTANDARD ASSIGNMENT PROBLEM

\square In the case $m>n$:
we create ($m-n$) fictitious jobs and we have m machines and $n+m-n=m$ jobs; we assignthe machinery costs for the fictitious jobs to be 0 :
note that the objective function remains unchanged
since a fictitious job assigned to a machine is, in
effect, a machine that remains idle

NONSTANDARD ASSIGNMENT
PROBLEM
\square For the case $n>m:$

we create $(\boldsymbol{n}-\boldsymbol{m})$ fictitious machines with
machine costs of 0 and the solution
obtained has the ($n-m$) jobs that cannot be
done due to lack of machines

NONSTANDARD ASSIGNMENT PROBLEM

In principle, any assignment problem may be solved using the transportation problem technique; in practice, this approach is not practical since every basic feasible solution is degenerate

- We note that in the standard assignment problem for m machines with $m=n$, there are exactly $m x_{i j}$ that are 1 (nonzero) but every basic feasible solution of the transportation problem has $(2 m-1)$ basic variables of which $(m-1)$ have the value zero

