ECE 307 – Techniques for Engineering Decisions

Lecture 5. Networks and Flows

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NETWORKS AND FLOWS A network is a system of lines or channels or branches that connect different points Examples abound virtually in all aspects of life: electrical systems; communication networks; airline webs; local area networks; and distribution systems

NETWORKS AND FLOWS

□ The network structure is also common to many

other systems that at first glance are not

necessarily viewed as networks

O distribution of products through a system

consisting of manufacturing plants,

warehouses and retail outlets

O matching problems such as work to people,

tasks to machines and computer dating ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

THE TRANSPORTATION PROBLEM

□ The transportation problem is to determine the *optimal shipping schedule* that minimizes shipping costs from the set of *m* warehouses to the set of *n* markets by determining the quantities shipped from each warehouse *i* to each market *j*, for i = 1, 2, ..., m, j = 1, 2, ..., nECE 307 5 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

TRANSPORTATION PROBLEM SETUP						
market j w/h i	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	<i>M</i> ₄	supplies	
W ₁	x_{11}	x_{12}	x_{13}	x_{14}	<i>a</i> ₁	
W ₂	$\begin{array}{c} x_{21} \\ \hline c_{21} \end{array}$	x ₂₂	$\begin{array}{c} x_{23} \\ \hline c_{23} \end{array}$	x ₂₄	<i>a</i> ₂	
W ₃	x_{31}	x ₃₂	x ₃₃	x ₃₄	<i>a</i> ₃	
demands	b ₁	b ₂	b ₃	b ₄	$\sum_{i} \boldsymbol{a}_{i} = \sum_{j} \boldsymbol{b}_{j}$	
	ECE 307 © 2005 - 2019	9 George Gross, Unive	rsity of Illinois at Urba	na-Champaign, All Rig	ghts Reserved. 14	

TRANSPORTATION PROBLEM NUMERICAL EXAMPLE							
market j w/h i	<i>M</i> ₁	<i>M</i> ₂	M ₃	M ₄	<i>a</i> _{<i>i</i>}		
W ₁	2	2	2	1	3		
W ₂	10	8	5	4	7		
W ₃	7	6	6	8	5		
b _j	4	3	4	4			

THE LEAST – COST RULE PROCEDURE

□ The *LCRP* generates an initial *basic feasible solution*

which has at most (m + n - 1) positive-valued *basic*

variables

□ The principal idea of the scheme is to select, at

each step, the variable x_{ij} with the *lowest shipping*

costs c_{ij} as the next *basic variable* to enter the basis ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $\Box c_{14} \text{ is the lowest } c_{ij} \text{ and we select } x_{14} \text{ as a } basic wariable}$

□ We choose x_{14} as large as possible without violating any constraints:

 $min \{a_1, b_4\} = min \{3, 4\} = 3$

U We set $x_{14} = 3$ and set

 $x_{11} = x_{12} = x_{13} = \theta$

□ We delete row 1 from any further consideration

since all the supplies from W_1 are exhausted

APPLICATION OF THE LEAST – COST RULE						
market j w/h i	M_{1}	M_2	<i>M</i> ₃	M_4	a _i	
W ₁	2	2	2	3	3	
<i>W</i> ₂	10	8	5	4	7	
W ₃	7	6	6	8	5	
b _j	4 ECE 307 © 2005 - 2019	3 9 George Gross, Univer	4 rsity of Illinois at Urba	4 na-Champaign, All Rig	ts Reserved. 18	

APPLICATION OF THE LEAST – COST RULE

 \Box The remaining demand at M_4 is

4 - 3 = 1

which is the value for the modified demand at M_4

□ We again apply the *criterion selection* to the reduced

tableau: since c_{24} is the lowest-valued c_{ii} , we

select x_{24} **as the next** *basic variable* ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

APPLICATION OF THE LEAST – COST RULE

 \Box We wish to set x_{24} as large as possible without

violating any constraints:

min
$$\{a_2, b_4\} = min \{7, 1\} = 1$$

and we set $x_{24} = 1$ and since there is no more

demand at M_4

 $x_{34} = 0$

We delete column 4 from any further consideration

since all the demand at M_4 is met ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

APPLICATION OF THE LEAST – COST RULE

\Box The remaining supply at W_2 is

7 - 1 = 6,

which is the value for the modified supply at W_2

□ We repeat these steps until we find the values of

the (m + n - 1) nonzero basic variables to obtain a

basic feasible solution

In the reduced tableau,

APPLICATION OF THE LEAST – COST RULE								
market j w/h i	M ₁	M_2	<i>M</i> ₃	<i>a</i> _i				
W ₂	10	8	4	6				
W ₃	7	6	0	5				
b _j	4	3	4 s at Urbana-Champaign, A	Il Rights Reserved. 2				

APPLICATION OF THE LEAST – COST RULE							
market j w/h i	<i>M</i> ₁	<i>M</i> ₂	<i>a</i> _i				
W ₂	10	0	2				
W ₃	7	3	5				
b _j	4 2005 - 2019 George Gross, Unive	3 rsity of Illinois at Urbana-Cham	paign, All Rights Reserved. 2				

APPLICATION OF THE LEAST – COST RULE

O pick x_{32} to enter the basis

O set

$$x_{32} = min \{3, 5\} = 3$$

and set

 $x_{22} = \theta$

O eliminate column 2 in the reduced tableau and

reduce the supply at W_3 to 5-3 = 2

□ The last reduced tableau is

APPLICATION OF THE LEAST – COST RULE						
market j w/h i	<i>M</i> ₁	<i>a</i> _i				
W ₂	10	2				
W ₃	2	2				
b _j ECE 307 © 2005 - 2019	4 George Gross, University of Illinois at Urb	ana-Champaign, All Rights Reserved. 20				

INITIAL BASIC FEASIBLE SOLUTION						
market j w/h i	<i>M</i> ₁	<i>M</i> ₂	M_3	M_4	<i>a</i> _i	
W ₁	2	2	2	3	3	
W ₂	2 10	8	4 5	1 4	7	
W ₃	2 7	3	6	8	5	
b _j	4	3 9 George Gross, Univer	4	4	this Reserved 2	

THE STP						
□ The primal problem is						
$min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$						
s.t.						
$u_i \leftrightarrow \sum_{j=1}^n x_{ij} = a_i \qquad i = 1, \dots, m$	(P)					
$v_j \leftrightarrow \sum_{i=1}^m x_{ij} = b_j \qquad j = 1, \dots, n$						
$x_{ij} \geq 0$ ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 30						

STP NUMERICAL EXAMPLE Arbitrarily, we set the variable $v_4 = \theta$ and solve the equations above to obtain $u_1 = 1$ $u_2 = 4$ $v_3 = 1$ $v_1 = 6$ $u_3 = 1$ $v_2 = 5$ ECE 307 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $\Box \text{ The } \tilde{c}_{ij} \text{ for the nonbasic variables are}$ $x_{11}: \tilde{c}_{11} = c_{11} - (u_1 + v_1) = 2 - (1 + 6) = -5$ $x_{12}: \tilde{c}_{12} = c_{12} - (u_1 + v_2) = 2 - (1 + 5) = -4$ $x_{13}: \tilde{c}_{13} = c_{13} - (u_1 + v_3) = 2 - (1 + 1) = 0$ $x_{34}: \tilde{c}_{34} = c_{34} - (u_3 + v_4) = 8 - (1 + 0) = 7$ $x_{33}: \tilde{c}_{33} = c_{33} - (u_3 + v_3) = 6 - (1 + 1) = 4$ ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE

We determine

$$\tilde{c}_{pq} = \min_{\substack{\overline{pq} \ \Rightarrow \ x_{\overline{pq}} \\ is \ nonbasic}} = \tilde{c}_{11} = -5$$

and consequently we pick the *nonbasic variable* x_{11}

to enter the *basis*

 \Box We determine the maximal value of x_{11} and set

 $x_{11} = \theta$ and make use of the tableau

S	STP NUMERICAL EXAMPLE							
market j w/h i	<i>M</i> ₁	<i>M</i> ₂	M ₃	M ₄	<i>a</i> _{<i>i</i>}			
W ₁	θ			3 – 0	3			
W ₂	2 – 0		4	1 + 0	7			
W ₃	2	3			5			
b _j	4	3	4	4				
, i i i i i i i i i i i i i i i i i i i	- ECE 307 © 2005 - 201		rsity of Illinois at Urba	na-Champaign, All Rig	tts Reserved. 4.			

□ Therefore,

$$\theta = min \{ 2, 3 \} = 2$$

\Box Consequently, x_{21} becomes θ and leaves the basis

□ We obtain the *basic feasible solution*

$$x_{14} = 1, \ x_{11} = 2, \ x_{31} = 2, \ x_{32} = 3, \ x_{23} = 4, \ x_{24} = 3$$

and repeat to solve the u - v problem for this

adjacent basic feasible solution

The complementary slackness conditions of the nonzero valued basic variables obtain

$$u_{1} + v_{1} = c_{11} = 2$$

$$u_{1} + v_{4} = c_{14} = 1$$

$$u_{2} + v_{3} = c_{23} = 5$$

$$u_{2} + v_{4} = c_{24} = 4$$

$$u_{3} + v_{1} = c_{31} = 7$$

$$u_{3} + v_{2} = c_{32} = 6$$
ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

STP NUMERICAL EXAMPLE $\tilde{c}_{12} = c_{12} - (u_1 + v_2) = 2 - (\theta + 1) = 1$ $\tilde{c}_{13} = c_{13} - (u_1 + v_3) = 2 - (\theta + 2) = 0$ $\tilde{c}_{21} = c_{21} - (u_2 + v_1) = 10 - (3 + 2) = 5$ $\tilde{c}_{22} = c_{22} - (u_2 + v_2) = 8 - (3 + 1) = 4$ $\tilde{c}_{33} = c_{33} - (u_3 + v_3) = 6 - (5 + 2) = -1$ $\tilde{c}_{34} = c_{34} - (u_3 + v_4) = 8 - (5 + 1) = 2$ only possible improvement I We introduce x_{33} as a basic variable and determine its nonnegative value θ from the tableau ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 48

STP NUMERICAL EXAMPLE							
market j w/h i	M_{1}	M_2	M ₃	M_4	<i>a</i> _i		
W ₁	2 + 0			1 – 0	3		
W ₂			4 – 0	3 + 0	7		
W ₃	2 – <i>θ</i>	3	θ		5		
b _j	4	3	4 sity of Illinois at Urban	4			

 \Box The limiting value of θ is

 $\theta = min \{2, 4, 1\} = 1$

\Box Consequently, x_{14} leaves the basis and x_{33}

enters the basis with the value 1

We obtain the adjacent basic feasible solution in

ELECTRICITY COSTS								
			ci	ty		supplies		
to from		1	1 2 3 4					
	1	8	6	10	9	35		
plant	2	9	12	13	7	50		
	3	14	9	16	5	40		
<i>deman</i> (10 ⁶ kV		45 ECE 307 © 2005 - 2019	20 George Gross, Univer	30 sity of Illinois at Urbar	30 a-Champaign, All Rig	125 ts Reserved.		

ELECTRICITY ALLOCATION EXAMPLE We note that $\int_{i=1}^{3} a_i = \int_{j=1}^{4} b_j$ and so we have a balanced transportation problem We make use of the *LCRP* to construct a basic feasible solution EXEMPTED = 2005 - 2

ELE	ELECTRICITY ALLOCATION EXAMPLE: SOLUTION						
	to		ci	ty		supplies	
from	\searrow	1	2	3	4	$(10^{6} kWh)$	
	1	8	6	10	0	35	
plant	2	9	12	13	0 7	50	
	3	14	9	16	30	10	
deman (10 ⁶ kV	Vh)	45 ECE 307 © 2005 - 2019	20	30	30	125	

❑ And we set

 x₃₄ = 30
 x₁₄ = 0
 x₂₄ = 0

 ❑ We compute the remaining supply at plant 3 and remove column corresponding to city 4 from further consideration
 ❑ We continue with the reduced system
 ❑ ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION								
to			city		supplies (10 ⁶ kWh)			
from	\searrow	1	2	3	(10 kmh)			
	1	8	20	10	15			
plant	2	9	0	13	50			
	3	14	0 9	16	10			
demands (10 ⁶ kWh)		45 307 © 2005 - 2019 George 6	20	30	Il Rights Reserved. 5			

and so we set

$$x_{12} = 20$$

$$x_{22} = 0$$

$$x_{32} = \theta$$

We recompute the supply remaining at plant 1 and

remove column corresponding to city 2

The new reduced system obtains

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION							
	to	ci	supplies				
from	\searrow	1	3	$(10^{6} kWh)$			
	1	15 8	0	15			
plant	2	9	13	50			
	3	14	16	10			
demands (10 ⁶ kWh)		30	30 sity of Illinois at Urbana-Cham	naion, All Riohts Reserved. 6			

and therefore we set

 $x_{11} = 15$

 $x_{13} = \theta$

and remove the row corresponding to plant 1 from

further consideration since its supply is exhausted

The operation is repeated on the reduced system

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION							
	to	ci	supplies (10 ⁶ kWh)				
from		1	3	$(10^{\circ} KWh)$			
	2	30 9	13	20			
plant	3	0	16	10			
demands (10 ⁶ kWh)		30	30				

and therefore we set

 $x_{21} = 30$

 $x_{31} = \theta$

and remove the column corresponding to city 1

from further consideration

□ We are finally left with

ELECTRICITY ALLOCATION EXAMPLE: SOLUTION							
	to	city	supplies (10 ⁶ kWh)				
from		3	(10 kWn)				
	2	20	20				
plant	3	10	10				
<i>dema</i> (10 ⁶ k		30					

which allows us to set

 $x_{23} = 20$

$$x_{33} = 10$$

□ The basic feasible solution has the costs

 $Z = 30 \cdot 5 + 20 \cdot 6 + 15 \cdot 8 + 30 \cdot 9 + 20 \cdot 13 + 10 \cdot 16 = 1,080$

U We improve this solution by using the u - v scheme

□ The first tableau corresponding to the initial basic

feasible solution is:

STP NUMERICAL EXAMPLE							
cities plants	1	2	3	4	a _i		
1	15- <mark>Ө</mark>	20	θ		35		
2	30 + 0		20 – 0		50		
3			10	30	40		
b _j	45	20	30 rsity of Illinois at Urban	30	hts Reserved. 7(

 □ The adjacent basic feasible solution is
 x₂₁ = 45, x₁₂ = 20, x₁₃ = 15, x₂₃ = 5, x₃₃ = 10, x₃₄ = 30
 and the new value of Z is
 Z = 20 ⋅ 6 + 15 ⋅ 10 + 45 ⋅ 9 + 5 ⋅ 13 + 10 ⋅ 16 + 30 ⋅ 5
 = 1050 < 1080

 □ We again pursue a u - v improvement strategy by
 starting with the tableau
 ECE 307 0 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
 71

	STP NUMERICAL EXAMPLE							
cit plants	ties	$v_1 = 6$	$v_2 = 6$	$v_3 = 10$	$v_4 = -1$	supplies		
$u_1 = 0$)		20 6	15		35		
$u_2 = 3$	3	45 9		5		50		
$u_3 = 6$	5			10	30 5	40		
demana		45	20 George Gross, Univer	30 sity of Illinois at Urbar	30 a-Champaign, All Rig	11s Reserved 72		

S	STP NUMERICAL EXAMPLE							
plants cities	1	2	3	4	<i>a</i> _i			
1		20 - 0	15 + 0		35			
2	45		5		50			
3		θ	10 – 0	30	40			
b _j	45	20	30 rsity of Illinois at Urba	30				

STP NUMERICAL EXAMPLE

and so

 θ = min { 10, 20 } = 10

□ The adjacent basic feasible solution is, then,

 $x_{21} = 45$ $x_{12} = 10$ $x_{32} = 10$

 $x_{13} = 25$ $x_{23} = 5$ $x_{34} = 30$

and the value of Z becomes

 $Z = 45 \cdot 9 + 10 \cdot 6 + 10 \cdot 9 + 25 \cdot 10 + 5 \cdot 13 + 30 \cdot 5 = 1,02$

□ You need to prove, using *complementary slackness conditions*, that this is the true optimum

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NONSTANDARD TRANSPORTATION PROBLEM

NONSTANDARD TRANSPORTATION PROBLEM

□ For the excess demand case, we introduce the

fictitious warehouse W_{m+1} to supply the shortage

$$\left[\sum_{j=1}^{n} b_{j} - \sum_{i=1}^{m} a_{i}\right] \text{ and we set } c_{m+1,j} = 0, j = 1, 2, \dots, n$$

\Box The problem is in standard form with i = 1, ...,

m + 1 (number of warehouses augmented by 1) ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NONSTANDARD TRANSPORTATION PROBLEM

D Note that the variable $x_{m+1,j}$ is the *shortage* at

market *j* and is the shortfall in the demand b_i

experienced by each market M_i due to inadequate

supplies at warehouses i = 1, 2, ..., m

\Box At each market *j*, $x_{m+1,j}$ provides the measure of

the *infeasibility* of the problem

□ This problem is concerned with the scheduling the purchases of 2 plants – A and B – of the raw supplies from 3 growers with given availability / price

grower	availability (ton)	price (\$/ton)
Smith	200	10
Jones	300	9
Richard	400	8

EXAMPLE: CANNING OPERATIONS SCHEDULING

to	pl	ant
from	A	В
Smith	2	2.5
Jones	1	1.5
Richard	5	3

EXAMPLE: CANNING OPERATIONS SCHEDULING						
□ The pl	ants' capacity	limits and	labor costs	are		
	plant	A	В			
	capacity (ton)	450	550			
	labor costs (\$/ton)	25	20			
	ECE 307 © 2005 - 2019 George Gr	oss, University of Illinois at U	rbana-Champaign, All Right	s Reserved. 83		

The competitive selling price for canned goods is					
50 <i>\$ / ton</i> and the company can sell all it produces					
The problem is to determine the purchase					
schedule that produces the <i>maximum</i> profits					
Note that this is an unbalanced problem since					
$supply = 200 + 300 + 400 = 900 \ tons$					
$demand = 450 + 550 = 1000 \ tons > 900 \ tons$					
The decision variables are the amounts bought					
from each grower and shipped to each plant ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.					

🗆 The	supp	oly c	onst	rain	ts are	9		
			x _{sa}	+	x _{sb}	≤	200	
			X _{JA}	+	X _{JB}	≤	300	
			X _{RA}	+	X _{RB}	≤	400	
□ The	dema	and	cons	strai	ints a	re		
	x _{sa}	+	X _{JA}	+	X _{RA}	≤	450	
	~-				X _{RB}		550 at Urbana-Champaign, All Rights Reserved.	86

Clearly, all decision variables are nonnegative

The unbalanced nature of the problem requires the

introduction of a *fictitious* grower *F*, who is able to

supply 100 tons of the supply shortage; the addition

of *F* allows the *nonstandard* problem to be restated

as a standard transportation problem

□ We set up the *STP* tableau

EXAMPLE: CANNING OPERATIONS SCHEDULING							
A	В	supply					
13	17.5	200					
15	19.5	300					
12	19	400					
0	0	100					
450	550	1,000					
	A 13 15 12 0 450	A B 13 17.5 15 19.5 12 19 0 0					

□ In this problem, the objective is a *maximization*

rather than a minimization

U We therefore recast the "mechanics" of the u - v

scheme for the *maximization* problem

□ As a homework exercise, show that the duality

complementary slackness conditions allow us to

change the u - v algorithm in the following way:

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE: CANNING OPERATIONS SCHEDULING

• The selection of the nonbasic variable x_{ij} to enter the basis is from those x_{ij} whose corresponding $c_{ij} > u_i + v_j$ and we focus on and evaluate all $\tilde{c}_{ij} > 0$ for which x_{ij} is a candidate to enter the basis • we pick x_{pq} corresponding to $\tilde{c}_{pq} = \max_{\substack{p \ \overline{q} \ \overline{p} \ \overline{x}_{pq}} \{\tilde{c}_{\overline{pq}}\}$ is nonbasic and $\tilde{c}_{\overline{pq}} > 0$

EXAMPLE SOLUTION							
plant j grower i	A	В	supply				
S	200	0 17.5	200				
J	250	50 19.5	300				
R	0	400 19	400				
F	0	100 	100				
demand	450	550 rsity of Illinois at Urbana-Champa					

EXAMPLE SOLUTION

□ We construct the u - v relations for this solution $u_1 + v_1 = 13$ $u_2 + v_2 = 19.5$ $u_2 + v_1 = 15$ $u_3 + v_2 = 19$ $u_4 + v_2 = 0$ □ We arbitrarily set $u_1 = 0$ and compute $v_1 = 13$, $u_2 = 2$, $v_2 = 17.5$, $u_3 = 1.5$, $u_4 = -17.5$ ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE SOLUTION							
plant j grower i	A	В	supply				
S	200		200				
J	$250 - \frac{\theta}{15}$	50 + 0 19.5	300				
R		400	400				
F	θ	100 – 0	100				
demand	450	550					

EXAMPLE SOLUTION

 $u_1 + v_1 = 13$ $u_2 + v_2 = 19.5$

 $u_2 + v_1 = 15$ $u_3 + v_2 = 19$

 $u_4 + v_1 = 0$

U We solve by arbitrarily setting $u_1 = \theta$ and obtain

 $v_1 = 13$, $u_2 = 2$, $v_2 = 17.5$, $u_3 = 1.5$, $u_4 = -13$

```
ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
```

EXAMPLE SOLUTION

• We compute the \tilde{c}_{ij} for the nonbasic variables $\tilde{c}_{12} = 17.5 - (\theta + 17.5) = 0$ $\tilde{c}_{31} = 12 - (1.5 + 13) = -2.5$ $\tilde{c}_{42} = \theta - (-13 + 17.5) = -4.5$

EXAMPLE SOLUTION Since each \tilde{c}_{ij} is $\leq \theta$, no improvement in the maximization is possible and so the maximum profits are $Z = (200)13 + (150)15 + (100)\theta + (150)19.5 + (400)19$ = 15,375 \$ ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM

- O weekly plant capacity is 700
- O overtime is possible for weeks 2 and 3 with
 - the production of additional 200 *units*
 - additional cost per unit of \$5
- **○** *§* 3 for weekly storage of unsold production
- O the objective is to *minimize* the *total costs* for the
 - 4-week schedule
- □ The decision variables are
 - *x*_{*ij*} = *production in week i for use in week j market* ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SCHEDULING PROBLEM AS A STANDARD TRANSPORTATION PROBLEM								
d production		1	2	3	4	F	supply	
1	1 <i>M</i>	is a ve 10	ery larg	e num 16	ber 19	0	700	
	normal	M) 10	13	16	0	700	
2	o/t	M	15	18	3,200	0	200	
	normal	M	M	15	18	0	700	
3	o/t	<u>N</u> -	2,70		200 - 2,7	700 0	200	
2	1	M	2,70 <u>M</u>	M	15	0	700	
dem	and	300	700	900	800	500		

ASSIGNMENT PROBLEM and the problem constraints can be stated as $\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i \text{ each machine does exactly 1 job}$ $\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j \text{ each job is assigned to 1 machine}$ $\Box \text{ The objective, then, is}$ $min \ Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$

NONSTANDARD ASSIGNMENT PROBLEM

 \Box Suppose we have *m* machines and *n* jobs with

 $m \neq n$

□ We may convert this into an equivalent *standard*

assignment problem with equal number of machines

and jobs

□ The conversion requires the introduction of

either fictitious jobs or fictitious machines

NONSTANDARD ASSIGNMENT PROBLEM

 \Box In the case m > n:

we create (m - n) fictitious jobs and we have m

machines and n + m - n = m jobs; we assign the

machinery costs for the fictitious jobs to be θ :

note that the objective function *remains unchanged*

since a fictitious job assigned to a machine is, in

effect, a machine that remains idle

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

NONSTANDARD ASSIGNMENT PROBLEM

\Box For the case n > m:

we create (n - m) fictitious machines with

machine costs of θ and the solution

obtained has the (n - m) jobs that cannot be

done due to lack of machines

