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q A network is a system of lines or channels or 

branches that connect different points

q Examples abound virtually in all aspects of life:

m electrical systems;

m communication networks;

m airline webs;

m local area networks; and

m distribution systems

NETWORKS  AND  FLOWS
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q The network structure is also common to many 

other systems that at first glance are not 

necessarily viewed as networks

m distribution of products through a system 

consisting of manufacturing plants, 

warehouses and retail outlets 

m matching problems such as work to people, 

tasks to machines and computer dating

NETWORKS  AND  FLOWS
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m river systems with pondage for electricity 

generation
m mail delivery networks
m freight delivery networks
m project management of multiple tasks in a 

large undertaking such as a major 
construction project or a space flight

q We consider a broad range of network and 

network flow problems

NETWORKS  AND  FLOWS
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THE  TRANSPORTATION  PROBLEM
q The basic idea of the transportation problem is 

illustrated with the problem of the distribution of a 

specified homogeneous product from several ware-

houses to a number of localities at least cost

q We consider a system with  m warehouses, n  

markets and links between them with the specified 

costs of transportation
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THE  TRANSPORTATION  PROBLEM
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THE  TRANSPORTATION  PROBLEM

m all the supply comes from the m warehouses; 

we associate the index  i = 1, 2, … , m with a 

warehouse  

m all the demand is at the  n markets; we use the 

index   j = 1, 2, … , n with a market

m shipping costs ci j for each unit from the 

warehouse i to the market j and we set                                  

whenever warehouse i cannot ship to market  j 

c i j = ∞

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.              8

THE  TRANSPORTATION  PROBLEM

q The transportation problem is to determine the 

optimal shipping schedule that minimizes shipping 

costs from the set of  m warehouses to the set of  

n markets by determining the quantities shipped 

from each warehouse  i to each market j , for

i = 1, 2, … , m , j = 1, 2, … , n
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LP FORMULATION  OF  THE 
TRANSPORTATION  PROBLEM

q The decision variables are defined to be

q The objective function is 

x i j = quantity shipped from warehouse i to market j,

  
min

i=1

m

∑ ci j x i j
j =1

n

∑

1,2, ... , , 1,2, ... ,i m j n= =
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q The constraints are:

LP FORMULATION  OF  THE 
TRANSPORTATION  PROBLEM
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LP FORMULATION  OF  THE 
TRANSPORTATION  PROBLEM

q Note that feasibility requires that

q When

all the available supply at the m warehouses is               
shipped to meet all the demands of the n markets; 
this is known as the standard transportation problem

  
ai ≥ bj

j=1

n

∑
i=1

m

∑

  
ai = bj

j=1

n

∑
i=1

m

∑
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STANDARD  TRANSPORTATION 
PROBLEM (STP )

  

min c i j x i j
j =1

n

∑
i =1

m

∑

s.t.

x i j
j =1

n

∑ = a i
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STANDARD  TRANSPORTATION  
PROBLEM (STP )

q The standard transportation problem  has

m m n   variables x ij 

m m  +  n  equality constraints

q However, since

there are at most (m  +  n – 1) independent constraints

and, consequently, at most  (m  +  n – 1) independent 

variables  x i j (basic variables)

i =1

m

∑ x i j = ai
i =1

m

∑ = b j ,
j =1

n

∑
j =1

n

∑
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M1 M2 M3 M4 supplies

W1
x 11 x 12 x 13 x 14

W2
x 21 x 22 x 23 x 24

W3

x 31 x 32 x 33 x 34

demands b 1 b 2 b 3 b 4

c 23c 22

c 33c 31

c 21

TRANSPORTATION  PROBLEM  SETUP
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THE  LEAST – COST  RULE  
PROCEDURE

q The LCRP generates an initial basic feasible solution

which has at most (m + n – 1) positive–valued basic 

variables

q The principal idea of the scheme is to select, at 

each step, the variable  x i j   with the lowest shipping 

costs c i j   as the next basic variable to enter the basis
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APPLICATION  OF  THE  LEAST – COST 
RULE

q c 14  is the lowest  c i j and we select  x 14 as a basic 

variable

q We choose  x 14 as large as possible without 

violating any constraints:

min  { a 1 , b 4  }  = min  { 3 , 4 }  =  3

q We set  x 14 =  3 and set

x 11 =  x 12 =  x 13 =  0

q We delete row 1 from any further consideration 

since all the supplies from W1 are exhausted
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APPLICATION  OF  THE  LEAST – COST  
RULE
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APPLICATION  OF  THE  LEAST – COST 

RULE

q The remaining demand at  M 4 is

4 – 3  = 1

which is the value for the modified demand at M 4

q We again apply the criterion selection to the reduced 

tableau: since c 24 is the lowest–valued ci j , we 

select  x 24 as the next basic variable
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APPLICATION  OF  THE  LEAST – COST 
RULE

q We wish to set  x 24 as large as possible without 

violating any constraints:

min  { a 2 , b 4  }  = min  { 7 , 1 }  =  1

and we set  x 24 =  1 and since there is no more 

demand at M 4

x 34 =    0

q We delete column 4 from any further consideration 

since all the demand at  M 4 is met
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APPLICATION  OF  THE  LEAST – COST 

RULE

q The remaining supply at  W2 is

7 – 1  = 6 ,

which is the value for the modified supply at W2

q We repeat these steps until we find the values of 

the (m + n – 1) nonzero basic variables to obtain a 

basic feasible solution

q In the reduced tableau,
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APPLICATION  OF  THE  LEAST – COST 
RULE
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APPLICATION  OF  THE  LEAST – COST 
RULE

m pick  x 23 to enter the basis as the next basic 
variable

m set  

x 23 =  min { 6, 4 }  =  4

and set  
x 33 = 0

m eliminate column 3 and reduce the supply at  
W2 to 6 – 4  =  2

q For the reduced tableau
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APPLICATION  OF  THE  LEAST – COST 
RULE
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APPLICATION  OF  THE  LEAST – COST 
RULE

m pick  x 32 to enter the basis

m set 

x 32 =  min { 3, 5 }  =  3

and set

x 22 = 0

m eliminate column 2 in the reduced tableau and 

reduce the supply at  W3 to 5 – 3  =  2

q The last reduced tableau is
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APPLICATION  OF  THE  LEAST – COST 
RULE
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APPLICATION  OF  THE  LEAST – COST 
RULE

m pick  x 31 to enter the basis

m set 
x 31 =  min { 2, 4 }  =  2

m reduce the demand at  M 1 to

4 – 2  =  2

m the value of 

x 21 =  2

is obtained by default
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APPLICATION  OF  THE  LEAST – COST 
RULE

q The feasible solution involves only the basic 

variables and results in shipment costs of

1 1

3 4
1 4 5 63 1 4 3 2 27 10i j i j

i j
xc

= =
= × + × + × × + × + ×+å å

79=
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THE  STP

q The primal problem is 

  

min Z = c i j x i j
j =1

n

∑
i =1

m

∑

s.t.

   ui   ↔    x i j = ai
j =1

n

∑ i  = 1, ... ,m       

 v j ↔    x i j = b j
i =1

m

∑ j  = 1, ... ,n

x i j ≥ 0

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

  (P )
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THE  STP

q The dual problem is

  

max W = a i u i + b j v j
j =1

n

∑
i =1

m

∑

s.t.

   x i j   ↔    u i + v j ≤ c i j             i  = 1, ... ,m  

                                                   j  = 1, ... ,n

u i , v j are unrestricted in sign   

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

  (D)
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THE  STP

q The complementary slackness conditions for (D ) are

q Due to the equalities in (P ), the complementary 

slackness conditions in (P ) are unable to provide any 

additional or useful information 

  

x i j
∗[u i

∗ + v j
∗ − ci j ] = 0

i = 1, ... , m

j = 1, ... , n
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THE  TRANSPORTATION  PROBLEM

q The complementary slackness conditions obtain

q We make use of these complementary slackness 

conditions to develop the so–called  u – v  method for 

solving the standard transportation problem

 

x
i j

∗ > 0 ⇒ u
i

∗ + v
j

∗ = c i j

u
i

∗ + v
j

∗ < c i j ⇒ x
i j

∗ = 0
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THE   u – v METHOD
q The  u – v method starts with a basic feasible solution

for the primal problem, determines the 

corresponding dual variables (as if the basic feasible 

solution were optimal) and uses the duals to deter–

mine the adjacent basic feasible solution; the iteration 

process continues until the optimality conditions 

are satisfied
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THE   u – v METHOD
q For a basic feasible solution, we find the dual 

variable  u i and  v j   using the complementary 

slackness conditions

with  u i and  v j being unrestricted in sign

 
ui + v j = c i j  ∀ basic x i j
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THE   u – v METHOD
q We compute 

q This step is the analogue of computing      in the 
simplex tableau approach  (relative cost reduction 
vector)

q The complementary-slackness-based optimality test 
is performed :

, then the 
basic feasible solution is optimal

   
!c i j = c i j − ( ui + v j ) ∀ nonbasic x i j

  !c
T

  
if !ci j ≥ 0 ∀ nonbasic xi j xi j = 0⎡

⎣
⎤
⎦
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THE   u – v METHOD 
q Else, we consider each nonbasic variable        that 

satisfies

and determine

q We, then, select  to become the next basic 
variable and repeat the process for this new basic 
feasible solution; we continue the process until the 
optimality conditions are met

   
!cpq = cpq − (up + vq ) < 0

!c
pq

= min
pq ∍ xpq

   is nonbasic
 and !cpq < 0

" #$ !c
pq{ }

 
xpq

pqx
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STP NUMERICAL  EXAMPLE

q We apply the  u – v scheme to the example 

previously discussed

q The basic step from the dual formulation is to 

require

  

( ui + v j ) = c i j ∀ nonbasic x i j
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STP NUMERICAL  EXAMPLE
q We start with the basic feasible solution and apply 

the complementary slackness conditions

q We have 6 equations in 7 unknowns and so there 
is an infinite number of solutions

141 4

242 4

232 3

323 2

313 1

212 1

1
4
5
6
7
10

cu v
cu v
cu v
cu v
cu v
cu v

+ = =

+ = =

+ = =

+ = =

+ = =

+ = =
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STP NUMERICAL  EXAMPLE

q Arbitrarily, we set the variable

and solve the equations above to obtain
4v 0=

1

2

3

1

3

2

1

4

1

6

1

5

u

u

v

v

u

v

=

=

=

=

=

=



21

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.              41

STP NUMERICAL  EXAMPLE

q The       for the nonbasic variables are
  
!ci j

   

x11 : !c11 = c11 − (u1 + v1) = 2 − (1+ 6) = − 5

x12 : !c12 = c12 − (u1 + v2) = 2 − (1+ 5) = − 4

x13 : !c13 = c13 − (u1 + v3) = 2 − (1+1) = 0

x34 : !c34 = c34 − (u3 + v4) = 8 − (1+ 0) = 7

x33 : !c33 = c33 − (u3 + v3) = 6 − (1+1) = 4
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q We determine

and consequently we pick the nonbasic variable x11

to enter the basis

q We determine the maximal value of  x11 and set

and make use of the tableau 

STP NUMERICAL  EXAMPLE

   

!cpq = min
  pq  ∍ x pq
is nonbasic

= !c 11 = − 5

            

11x q=
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STP NUMERICAL  EXAMPLE

market  j 
M 1 M 2 M 3 M 4 a i

W1 3

W2 7

W3

b j 4 3 4 4

2

3

1

2 3

4

5

θ θ

θθ– +

–

w/h i
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STP NUMERICAL  EXAMPLE

q Therefore,

=  min { 2, 3 } =  2

q Consequently, x21 becomes 0 and leaves the basis

q We obtain the basic feasible solution

x 14 = 1,  x 11 =  2, x 31 = 2, x 32 = 3, x 23 = 4, x 24 = 3

and repeat to solve the  u – v  problem for this 

adjacent basic feasible solution

θ
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STP NUMERICAL  EXAMPLE

market  j

2 1

4 3

2 3

2 2 2 1

10

7 6

8 5

6 8

4

u 1 = 0

u 2 = 3

u 3 = 5

v 2 = 1 v 3 = 2 v 4 = 1v 1 = 2

3

7

5

a i

b j 4 3 4 4

w/h i
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STP NUMERICAL  EXAMPLE

q The complementary slackness conditions of the 

nonzero valued basic variables obtain 

  

u1 + v1 = c11 = 2

u1 + v 4 = c14 = 1

u2 + v 3 = c 23 = 5

u2 + v 4 = c 24 = 4

u3 + v1 = c 31 = 7

u3 + v 2 = c 32 = 6
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STP NUMERICAL  EXAMPLE

q We set arbitrarily

and therefore

q We compute        for each nonbasic variable  

  
u 1 = 0

  

v 3 = 2

u 3 = 5

v 2 = 1

v 1 = 2

u 3 = 5

v 2 = 0

  
!c i j  

x i j
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STP NUMERICAL  EXAMPLE

only possible improvement
q We introduce x 33 as a basic variable and determine  

its nonnegative value from the tableau

   

!c12 = c12 − (u1 + v 2 ) = 2 − (0 +1) = 1
!c13 = c13 − (u1 + v 3 ) = 2 − (0 + 2) = 0
!c21 = c21 − (u2 + v1 ) = 10 − (3 + 2) = 5
!c22 = c22 − (u2 + v 2 ) = 8 − (3 +1) = 4
!c33 = c33 − (u3 + v 3 ) = 6 − (5 + 2) = −1
!c34 = c34 − (u3 + v 4 ) = 8 − (5 +1) = 2

θ
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STP NUMERICAL  EXAMPLE

market  j

W1 3

W2 7

W3 5

b j 4 3 4 4

4

2 3

2 1

3

a iM 4M 3M 2M 1

θ θ

θ θ

θ θ

–

–

+ –

+

w/h i
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q The limiting value of  q is 

=  min { 2, 4, 1 }  =  1

q Consequently,  x14 leaves the basis and  x33

enters the basis with the value  1

q We obtain the adjacent basic feasible solution in

STP NUMERICAL  EXAMPLE

θ
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2

STP NUMERICAL  EXAMPLE

3

7

b j 4 3 4 4

2 2 1

10

7 6

8 5

6 8

4

3

3 4

131

w/h  i

market  j

u 1 = 0

u 2 = 4

u 3 = 5 5

a iv 4 = 0v 3 = 1v 2 = 1v 1 = 2
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q We evaluate        for each nonbasic variable;                  

and so we have an optimal solution with

and resulting in the least total costs of  68

STP NUMERICAL  EXAMPLE

  
!c

i j

  
!c

i j
≥ 0

1

1

2

3

3

1

3

2

4

3

3

2

3 6
1 7
3 18
1 6
3 15
4 16

shipping from to with costs

shipping from to with costs

shipping from to with costs

shipping from to with costs

shipping from to with costs

shipping f

M

M

M

M

M

Mrom to with cos

W

W

W

W ts

W

W
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ELECTRICITY  DISTRIBUTION  
EXAMPLE

q We consider an electric utility system in which     

3 power plants are used to supply the electricity 

demand of  4 cities

q The supplies available from the 3 plants are given

q The demands of the 4 cities are specified

q The costs of supply per  106 kWh are given
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9

16

ELECTRICITY  COSTS

to
city

supplies 
(10 6 kWh)1 2 3 4

plant

1 35

2 50

3 40

demands
(10 6 kWh)

45 20 30 30 125

8 6 10

9 12 13 7

14 9 5

from
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9

16

to city supplies 
(10 6 kWh)1 2 3 4

Plant

1 35

2 50

3 40

demands
(10 6 kWh)

45 20 30 30

8 6 10

9 12 13 7

14 9 5

ELECTRICITY  COSTS

balanced 

transportation 

problem

125

from
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ELECTRICITY  ALLOCATION  EXAMPLE 

q We note that

and so we have a balanced transportation 

problem

q We make use of the LCRP to construct a basic 

feasible solution

i j
i j
a b

3 4

1 1= =

=å å



29

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.              57

ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

to city supplies
(10 6 kWh)1 2 3 4

plant

1 35

2 50

3 40

demands
(10 6 kWh)

45 20 30 30 125

8 6 10 9

9

14 9

12 13

16 5

7

30 10

0

0

from
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

q And we set
x 34 =   30

x 14 =   0

x 24 = 0

q We compute the remaining supply at plant 3 and 

remove column corresponding to city 4 from 

further consideration

q We continue with the reduced system
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

to city supplies
(10 6 kWh)

1 2 3

plant

1 35

2 50

3 10

demands
(10 6 kWh)

45 20 30

8 6 10

9

14 9

12 13

16

20 15

0

0

from
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

and so we set

x 12 =   20

x 22 =   0

x 32 = 0

q We recompute the supply remaining at plant 1 and   

remove column corresponding to city 2

q The new reduced system obtains
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

to city supplies
(10 6 kWh)

1 3

plant

1 15

2 50

3 10

demands
(10 6 kWh)

45 30

8 10

9

14

13

16

15

30

0

from
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

and therefore we set

x 11 =  15

x 13 = 0

and remove the row corresponding to plant 1 from 

further consideration since its supply is exhausted

q The operation is repeated on the reduced system
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to city supplies
(10 6 kWh)

1 3

plant

2 50

3 10

demands
(10 6 kWh)

30 30

9 13

14 16

30 20

ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

0

from
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

and therefore we set

x 21 =  30

x 31 = 0

and remove the column corresponding to city 1

from further consideration

q We are finally left with
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to city supplies
(10 6 kWh)

3

plant

2 20

3 10

demands
(10 6 kWh)

30

13

16

ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

20

10

from
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ELECTRICITY  ALLOCATION  EXAMPLE: 
SOLUTION

which allows us to set

x 23 =  20

x 33 = 10

q The basic feasible solution has the costs

Z = 30 · 5 + 20 · 6 + 15 · 8 + 30 · 9 + 20 · 13 + 10 · 16 = 1,080

q We improve this solution by using the  u – v scheme

q The first tableau corresponding to the initial basic 

feasible solution is:
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to supplies
(10 6 kWh)1 2 3 4

1 35

2 50

3 40

demands
(10 6 kWh)

45 20 30 30

8 6

9 13

16 5

ELECTRICITY  ALLOCATION  EXAMPLE:    
SOLUTION

15

20

3010

20

30

pl
an
t

city

from
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STP NUMERICAL  EXAMPLE
q We compute, the possible improvements at each 

nonbasic variable:

   

!c31 = c31 − (u3 + v1) = 14 − (4 + 8) = 2
!c22 = c22 − (u2 + v2) = 12 − (1+ 6) = 5
!c32 = c32 − (u3 + v2) = 9 − (4 + 6) = −1
!c13 = c13 − (u1 + v3) = 10 − (0 +12) = −2
!c14 = c14 − (u1 + v4) = 9 − (0 +1) = 8
!c24 = c24 − (u2 + v4) = 7 − (1+1) = 5

improvement possible
better improvement
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STP NUMERICAL  EXAMPLE

q We bring  x 13 into the basis and determine the 

value of  q  using the tableau structure

q From the tableau we conclude that 

= min { 15, 20 }  =  15

and therefore  x 11 leaves the basis to determine 

the adjacent basic feasible solution given in the table

θ
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STP NUMERICAL  EXAMPLE

cities

plants
1 2 3 4 ai

1

2

3

bj

–+ 

20-

3010

35

50

40

45 3020 30

15 

30   20   θ

θ

θ

θ
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STP NUMERICAL  EXAMPLE

q The adjacent basic feasible solution is

x 21 = 45,   x 12 = 20,   x 13 = 15,   x 23 = 5,   x 33 = 10,   x 34 = 30

and the new value of  Z is 

Z =   20 · 6 + 15 · 10 + 45 · 9 + 5 · 13  +  10 · 16  +  30 · 5 

=   1050  <  1080         

q We again pursue a  u – v improvement strategy by 

starting with the tableau
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cities
supplies

35

50

40

demands 45 20 30 30

6

9 13

16 5

u 1 = 0

u 2 = 3

u 3 = 6

v 2 = 6 v 3 = 10 v 4 = – 1v 1 = 6

5

15

10

20

45

STP NUMERICAL  EXAMPLE

10

30

plants
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STANDARD  TRANSPORTATION  
EXAMPLE

11 11 1 1

31 31 3 1

22 2 222

32 32 3 2

14 1 414

24 2 424

( ) 8 ( 6) 2
( ) (6 6)14 2
( ) 12 (3 6) 3
( ) (6 6)9 3
( ) 9 ( 1) 10
( ) (3 1)7 5

c c u v 0
c c u v

c u vc
c c u v

c u v 0c
c u vc

= − + = − + =
+ += − = − =

= − = − =+ +
+ += − = − = −

= − = − =+ −
+ −= − = − =

!

!

!

!

!

!
only possible improvement

q The complementary slackness conditions obtain 
the possible improvements

q We bring x 32 into the basis and with its value 
determined from 

θ
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STP NUMERICAL  EXAMPLE
plants

1 2 3 4 a i

1

2

3

b j

15

545

20

3010

35

50

40

45 3020 30

–

– + 

θ

θ θ

θ

cities
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STP NUMERICAL  EXAMPLE
and so

= min { 10, 20 }  =  10

q The adjacent basic feasible solution is, then,

x21 =  45 x12 =  10 x32 =  10

x13 =  25 x23 =  5 x34 =  30

and the value of  Z becomes

Z = 45 · 9 + 10 · 6 + 10 · 9 + 25 · 10  +  5 · 13 + 30 · 5 = 1,020

q You need to prove, using complementary slackness 
conditions, that this is the true optimum

θ
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NONSTANDARD  TRANSPORTATION  
PROBLEM

q The nonstandard transportation problem arises 
when supply and demand are unbalanced: either 
supply exceeds demand or vice versa

q We solve by transforming the nonstandard 
problem into a standard one

q The approach is to create a fictitious entity – a 
market to absorb the surplus supply or a 
warehouse for the supply deficit – and solve the 
problem with the fictitious entity as a balanced 
transportation problem
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NONSTANDARD  TRANSPORTATION  
PROBLEM

q For the case

we create the fictitious market Mn+1 to absorb all 

the excess supply                          ; we set c i, n+1 =  0,

since M n+1 is fictitious

q The problem is then in standard form with j = 1, 2, 

… , n, n+1, for the augmented number of markets

  
a i

i = 1

m
∑ − b j

j = 1

n
∑⎛

⎝
⎞
⎠

  ∀ i =1,2, ... ,m

   

ai
i=1

m

∑

supply
! "#

> bj
i=1

n

∑

demand
! "##
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NONSTANDARD  TRANSPORTATION  
PROBLEM

q For the case

the problem is not , in effect, feasible since all the 

demands cannot be met and therefore the least–

cost shipping schedule is that which will supply as 

much as possible of the demands of the markets 

at the lowest cost

    

b
j

j = 1

n

∑

demand
! "##

> ai
i = 1

m

∑

supply

! "##
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NONSTANDARD  TRANSPORTATION  
PROBLEM

q For the excess demand case, we introduce the 

fictitious warehouse  W m+1 to supply the shortage                              

and we set c m+1, j =  0, j = 1, 2, … , n  

q The problem is in standard form with  i = 1, … ,

m + 1 (number of warehouses augmented by 1)

  
b j

j=1

n

∑ − a i
i=1

m

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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NONSTANDARD  TRANSPORTATION  
PROBLEM

q Note that the variable  x m+1, j   is the shortage at 

market  j  and is the shortfall in the demand  b j  

experienced by each market  M j  due to inadequate 

supplies at warehouses  i = 1, 2, …, m 

q At each market   j ,  x m+1, j provides the measure  of 

the infeasibility of the problem
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q This problem is concerned with the scheduling the 

purchases of 2 plants – A and  B – of the raw sup-

plies from 3 growers with given availability / price

Smith 200 10

Jones 300 9

Richard 400 8

grower availability (ton) price ( $ / ton )
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q The shipping costs in  $/ ton are given by

to

from A B

Smith 2 2.5

Jones 1 1.5

Richard 5 3

plant
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q The plants’ capacity limits and labor costs are 

plant A B

capacity

( ton )
450 550

labor costs

( $ / ton )
25 20
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q The competitive selling price for canned goods is  

50 $ / ton and the company can sell all it produces

q The problem is to determine the purchase  

schedule that produces the maximum profits

q Note that this is an unbalanced problem since

supply = 200 + 300 + 400  =  900 tons

demand = 450 + 550          =  1000 tons > 900 tons

q The decision variables are the amounts bought 

from each grower and shipped to each plant
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q The objective is formulated as

max Z = 50−25−10−2
13

! "## $##
!

"

#
#

$

%

&
&
xSA + 50−25−9−1

15
! "## $##
!

"

#
#

$

%

&
&
xJA

+ 50−25−8−5
12

! "## $##
!

"

#
#

$

%

&
&
xRA + 50−20−10−2.5

17.5
! "### $###

!

"

#
#

$

%

&
&
xSB

+ 50−20−9−1.5
19.5

! "### $###

!

"

#
#

$

%

&
&
xJB + 50−20−8−3

19
! "## $##
!

"

#
#

$

%

&
&
xRB
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q The supply constraints are

q The demand constraints are

  

x SA + x JA + x RA ≤ 450

x SB + x JA + x RB ≤ 550

  

x SA + x SB ≤ 200

x JA + x JB ≤ 300

x RA + x RB ≤ 400
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q Clearly, all decision variables are nonnegative

q The unbalanced nature of the problem requires the 

introduction of a fictitious grower F, who is able to 

supply 100 tons of the supply shortage; the addition 

of F allows the nonstandard problem to be restated 

as a standard transportation problem

q We set up the STP tableau
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13

12 19

15 19.5

17.5

0 0

A B supply

S 200

J 300

R 400

F 100

demand 450 550 1,000

EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

plant j

grower i
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

q In this problem, the objective is a maximization

rather than a minimization

q We therefore recast the “mechanics” of the u – v

scheme for the maximization problem

q As a homework exercise, show that the duality 

complementary slackness conditions allow us to 

change the u – v algorithm in the following way:
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EXAMPLE:  CANNING  OPERATIONS  
SCHEDULING

m the selection of the nonbasic variable  xi j   to 
enter the basis is from those  xi j  whose 

corresponding

and we focus on and evaluate all               for 
which  xi j  is a candidate to enter the basis

m we pick  xpq corresponding to

 
c i j > u i + v j

  
!c i j > 0

   

!c
pq

= max
pq ∍ xpq

  is nonbasic
 and !cpq > 0

" #$ !c
pq{ }
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EXAMPLE  SOLUTION

plant j

grower i

A B supply

S 200

J 300

R 400

F 100

demand 450 550

200

250

0

0

50

400

100

0

13

15 19.5

17.5

12

0 0

19
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EXAMPLE  SOLUTION

q We construct the  u – v  relations for this solution

q We arbitrarily set  u 1 = 0 and compute

v 1 = 13,  u 2 = 2,  v 2 = 17.5,  u 3 = 1.5,  u 4 =  – 17.5  

  

u 1 +v 1 =13                 u 2 +v 2 =19.5

u 2 +v 1 =15                 u 3 +v 2 =19

                                           u 4 +v 2 =0
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EXAMPLE  SOLUTION
q We evaluate the       corresponding to the 

nonbasic variables

q Thus, x 41 enters the basis and we determine

   

!c31 = c31 − (u3 + v1) = 12 − (1.5 +13) = − 2.5

!c41 = c41 − (u4 + v1) = 0 − (−17.5 +13) = 4.5

!c12 = c12 − (u1 + v2) = 17.5 − (0 +17.5) = 0

  
!ci j

single possible improvement
θ
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EXAMPLE  SOLUTION

plant j

grower i
A B supply

S 200

J 300

R 400

F 100

demand 450 550

200

250  – 50 + 

400

100  –

13

15 19.5

0 0

19

θ θ

θ θ
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EXAMPLE  SOLUTION
q It follows that 

θ =  min  { 250, 100 }  =  100

and so the adjacent basic feasible solution is

x 11 = 200, x 21 = 150,  x 41 = 100,  x 22 = 150,  x 32 = 400

q We repeat the u – v  procedure with the new basic 

variables and solve
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EXAMPLE  SOLUTION

q We solve by arbitrarily setting  u1 = 0  and obtain

v1 =  13 ,  u2 =  2 ,  v2 =  17.5 ,  u3 =  1.5 ,  u4 =   – 13     

u1 + v1 =  13

u2 + v1 =  15

u2 + v2 =   19.5

u3 + v2 =   19

u4 + v1 =   0
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q We compute the       for the nonbasic variables

EXAMPLE  SOLUTION

!c12  =  17.5 − (0 +17.5)    =   0

!c31  =  12 −   (1.5+13)    =   −  2.5

!c42  =   0    − ( −13+17.5)  =   −  4.5

i jc!
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EXAMPLE  SOLUTION
q Since each       is           ,  no improvement in the 

maximization is possible and so the maximum 

profits are

Z = (200)13 + (150)15 + (100)0 +(150)19.5 + (400)19

=  15,375 $

!i j 0c £
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SCHEDULING  PROBLEM  AS  A  
STANDARD  TRANSPORTATION  PROBLEM
q The problem is concerned with the weekly 

production scheduling over a 4 – week period

m production costs for each item 

m demands that need to be met are

first two weeks $ 10

last two weeks $ 15

week 1 2 3 4

demand 300 700 900 800
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SCHEDULING  PROBLEM  AS  A  
STANDARD  TRANSPORTATION  PROBLEM

m weekly plant capacity is 700

¦ overtime is possible for weeks 2 and 3 with 

– the production of additional 200 units

– additional cost per unit of $ 5

m $ 3 for weekly storage of unsold production 

m the objective is to minimize the total costs for the

4–week schedule

q The decision variables are

x i j = production in week  i for use in week  j market
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SCHEDULING  PROBLEM  AS  A  
STANDARD  TRANSPORTATION  PROBLEM

demand wk. 

production wk. 1 2 3 4 F supply

1 700

2

normal 700

o/t 200

3

normal 700

o/t 200

4 700

demand 300 700 900 800 500

M 10

1310

M

M

M

M M

M

M

15

19

M

20

15

18

13

16

16

21

18

23 0

015

0

0

0

2,700

3,200

3,200 – 2,700

M is a very large number

0
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ASSIGNMENT  PROBLEM

q We are given 

n machines           M 1 ,  M 2 , … ,  M n i

n jobs                      J 1 ,   J 2 , … ,    J n j

c i j  =  cost of doing job  j on machine i

c i j  =       if job  j cannot be done on machine i

each machine can only do one job and we wish to 
determine the optimal match, i.e., the assignment 
with the lowest total costs of doing each job j on 
the n available machines

«

«

M
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ASSIGNMENT  PROBLEM
q The brute force approach is simply enumeration: 

consider  n = 10  and there are 3,628,800 possible 

choices!

q We can, however, introduce categorical decision 

variables 

i j

job j is assigned  to machine i
x

0

1ì
ï
í
ï
î

=

otherwise
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ASSIGNMENT  PROBLEM

and the problem constraints can be stated as

q The objective, then, is 

   
x

i j
= 1 ∀ i eachmachine

j = 1

n

∑ does exactly 1 job

   

 x
i j

= 1 ∀ j each job
i = 1

n

∑ is  assigned to 1 machine

  
min Z = c i j

j = 1

n

∑ x i j
i = 1

n

∑
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ASSIGNMENT  PROBLEM

q This assignment problem is an STP with 

  

a i = 1 ∀ i

b j = 1 ∀ j

            ai =
i = 1

n

∑ b j
j = 1

n

∑
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NONSTANDARD  ASSIGNMENT 
PROBLEM

q Suppose we have  m machines and  n jobs with  

m  ≠  n

q We may convert this into an equivalent standard 

assignment problem with equal number of machines 

and jobs

q The conversion requires the introduction of 

either fictitious jobs or fictitious machines
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NONSTANDARD  ASSIGNMENT 
PROBLEM

q In the case m   >  n :

we create ( m – n ) fictitious jobs and we have m

machines and  n + m – n = m jobs; we assign the 

machinery costs for the fictitious jobs to be 0 : 

note that the objective function remains unchanged 

since a fictitious job assigned to a machine is, in 

effect, a machine that remains idle
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NONSTANDARD  ASSIGNMENT 
PROBLEM

q For the case  n   >   m :

we create  ( n – m ) fictitious machines with 

machine costs of  0  and the solution 

obtained has the ( n – m ) jobs that cannot be 

done due to lack of machines
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NONSTANDARD  ASSIGNMENT 
PROBLEM

q In principle, any assignment problem may be 

solved using the transportation problem 

technique; in practice, this approach is not 

practical since every basic feasible solution is 

degenerate
q We note that in the standard assignment problem for  

m machines with m = n , there are exactly m xi j

that are 1 (nonzero) but every basic feasible solution of 

the transportation problem has (2m – 1) basic 

variables of which (m – 1) have the value zero


