ECE 307- Techniques for Engineering Decisions

Lecture 4. Duality Concepts in Linear Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

DUALITY

□ Definition: A LP is in symmetric form if all the variables are restricted to be nonnegative and all the constraints are inequalities of the type:

objective type	corresponding inequality type		
max	<u>≤</u>		
min	<u>></u>		

DUALITY DEFINITIONS

☐ We first define the *primal* and *dual* problems

DUALITY DEFINITIONS

 \Box The problems (P) and (D) are called the symmetric

dual LP problems; we restate them as

$$\max Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

s.t.

$$a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n \le b_1$$
 $a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n \le b_2$
 \vdots

$$a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n \le b_m$$

 $x_1 \ge 0, \quad x_2 \ge 0, \quad ... , \quad x_n \ge 0$

DUALITY DEFINITIONS

$$min W = b_1 y_1 + b_2 y_2 + ... + b_m y_m$$

s.t.

$$a_{11} y_1 + a_{21} y_2 + ... + a_{m1} y_m \ge c_1$$
 $a_{12} y_1 + a_{22} y_2 + ... + a_{m2} y_m \ge c_2$
 \vdots
 $a_{1n} y_1 + a_{2n} y_2 + ... + a_{mn} y_m \ge c_n$
 $y_1 \ge 0, \quad y_2 \ge 0, \dots, \quad y_m \ge 0$

(D)

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

shipment cost coefficients

warehouses	retail stores			W
	R_{1}	R_2	R_3	
W_{1}	2	4	3	W.
W_{2}	5	3	4	

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

 \Box We are given that the *supplies* stored in warehouses W_1 and W_2 , satisfy supply at $W_1 \leq 300$ supply at W, \leq 600 ☐ We are also given the *demands needed* to be met at the retail stores R_1 , R_2 , and R_3 : demand at $R_1 \geq 200$ demand at R, ≥ 300

demand at $R_3 \geq 400$

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

☐ The problem is to determine the *least-cost* shipping

schedule

■ We define the decision variable

$$x_{ij}$$
 = quantity shipped from W_i to R_j $i = 1, 2, j = 1, 2, 3$

☐ The shipping costs may be viewed as

 c_{ij} = element i, j of the transportation cost matrix

FORMULATION STATEMENT

$$\min Z = \sum_{i=1}^{2} \sum_{j=1}^{3} c_{ij} x_{ij} = 2x_{11} + 4x_{12} + 3x_{13} + 5x_{21} + 3x_{22} + 4x_{23}$$
s.t.

$$x_{11} + x_{12} + x_{13}$$

$$x_{21} + x_{22} + x_{23} \leq 600$$

$$X_{11}$$

$$+ x_{21}$$

$$x_{12}$$

$$+ x_{22}$$

$$\geq$$
 300

$$x_{13}$$

$$+ x_{23} \ge 400$$

$$x_{ij} \ge 0$$
 $i = 1, 2, j = 1, 2, 3$

DUAL PROBLEM SETUP USING SYMMETRIC FORM

$$min Z = \sum_{i=1}^{2} \sum_{j=1}^{3} c_{ij} x_{ij}$$

s.t.

$$y_{1} \leftrightarrow -x_{11} - x_{12} - x_{13}$$
 ≥ -300
 $y_{2} \leftrightarrow -x_{21} - x_{22} - x_{23} \geq -600$
 $y_{3} \leftrightarrow x_{11} + x_{21} \geq 200$
 $y_{4} \leftrightarrow -x_{12} + x_{22} \geq 300$
 $y_{5} \leftrightarrow -x_{13} + x_{23} \geq 400$
 $x_{ij} \geq 0 \quad i = 1, 2 \quad j = 1, 2, 3$

DUAL PROBLEM SETUP

$$maxW = -300y_1 - 600y_2 + 200y_3 + 300y_4 + 400y_5$$

s.t.

THE DUAL PROBLEM INTERPRETATION

- ☐ The moving company proposes to the manufacturer to:
 - buy all the 300 units at W_1 at $y_1/unit$ buy all the 600 units at W_2 at $y_2/unit$ sell all the 200 units at R_1 at $y_3/unit$ sell all the 300 units at R_2 at $y_4/unit$ sell all the 400 units at R_3 at $y_5/unit$
- ☐ To convince the manufacturer to get the business, the mover ensures that the delivery fees cannot exceed the transportation costs the manufacturer would incur (the dual constraints)

THE DUAL PROBLEM INTERPRETATION

$$-y_{1} + y_{3} \leq c_{11} = 2$$

$$-y_{1} + y_{4} \leq c_{12} = 4$$

$$-y_{1} + y_{5} \leq c_{13} = 3$$

$$-y_{2} + y_{3} \leq c_{21} = 5$$

$$-y_{2} + y_{4} \leq c_{22} = 3$$

$$+y_{5} \leq c_{23} = 4$$

□ The mover wishes to maximize profits, i.e., $revenues - costs \Rightarrow dual \ cost \ objective \ function$

$$maxW = -300 y_1 - 600 y_2 + 200 y_3 + 300 y_4 + 400 y_5$$

EXAMPLE 2: FURNITURE PRODUCTS

□ Resource requirements

item	sales price (\$)
desks	60
tables	30
chairs	20

EXAMPLE 2: FURNITURE PRODUCTS

□ The Dakota Furniture Company manufacturing:

resource	desk	table	chair	available
lumber board (ft)	8	6	1	48
finishing (h)	4	2	1.5	20
carpentry (h)	2	1.5	0.5	8

- We assume that the demand for desks, tables and chairs is *unlimited* and the two required resources
 - lumber and labor are already purchased
- ☐ The decision problem is to maximize total revenues

PRIMAL AND DUAL PROBLEM FORMULATION

■ We define decision variables

$$x_1 = number of desks produced$$

$$x_2$$
 = number of tables produced

$$x_3$$
 = number of chairs produced

☐ The Dakota problem is

$$max \quad Z = 60x_1 + 30x_2 + 20x_3$$

s.t.

$$y_1 \leftrightarrow 8x_1 + 6x_2 + x_3 \leq 48$$
 lumber $y_2 \leftrightarrow 4x_1 + 2x_2 + 1.5x_3 \leq 20$ finishing $y_3 \leftrightarrow 2x_1 + 1.5x_2 + 0.5x_3 \leq 8$ carpentry

$$x_1, x_2, x_3 \geq \theta$$

PRIMAL AND DUAL PROBLEM FORMULATION

☐ The dual problem is

$$min W = 48y_1 + 20y_2 + 8y_3$$

s.t.

$$8y_1 + 4y_2 + 2y_3 \ge 60$$
 desk

$$6y_1 + 2y_2 + 1.5y_3 \ge 30$$
 table

$$y_1 + 1.5y_2 + 0.5y_3 \ge 20$$
 chair

$$y_1, y_2, y_3 \ge 0$$

PRIMAL AND DUAL PROBLEM FORMULATION

$$max \quad Z = 60 x_1 + 30 x_2 + 20 x_3$$
 $y_1 \leftrightarrow 8 x_1 + 6 x_2 + x_3 \leq 48$ lumber
 $y_2 \leftrightarrow 4 x_1 + 2 x_2 + 1.5 x_3 \leq 20$ finishing
 $y_3 \leftrightarrow 2 x_1 + 1.5 x_2 + 0.5 x_3 \leq 8$ carpentry
 $x_1, x_2, x_3 \geq 0$
 $max \quad W = 48 y_1 + 20 y_2 + 8 y_3$
 $48 y_1 + 20 y_2 + 8 y_3 \geq 60$ desk
 $6 y_1 + 2 y_2 + 1.5 y_3 \geq 30$ table
 $y_1 + 1.5 y_2 + 0.5 y_3 \geq 20$ chair
 $y_1, y_2, y_3 \geq 0$

INTERPRETATION OF THE DUAL PROBLEM

- ☐ An entrepreneur wishes to purchase all of Dakota's resources
- He needs, therefore, to determine the prices to pay for each unit of each resource

```
y_1 = price paid per ft of lumber board
```

$$y_2$$
 = price paid per h of finishing labor

- $y_3 = price paid per h of carpentry labor$
- ☐ We solve the Dakota dual problem to determine

$$y_1, y_2$$
 and y_3

INTERPRETATION OF THE DUAL PROBLEM

- ☐ To convince Dakota to sell the raw resources, the resource prices must be set sufficiently high
- ☐ For example, the entrepreneur must offer Dakota at least \$ 60 for a combination of resources that consists of 8 ft of lumber board, 4 h of finishing and 2 h of carpentry, since Dakota could use this combination to sell a desk for \$60; this requires es the following dual constraint:

$$8y_1 + 4y_2 + 2y_3 \geq 60$$

INTERPRETATION OF DUAL PROBLEM

- ☐ In the same way, we obtain the two additional
 - constraints for a table and for a chair

 \Box The *i* th primal variable is associated with the *i* th

- constraint in the dual problem statement
- \Box The j^{th} dual variable is associated with the j^{th}

constraint in the primal problem statement

- □ A new diet requires that all food eaten come from one of the four "basic food groups":
 - O chocolate cake O soda
 - O ice cream O cheesecake
- ☐ The four foods available for consumption are
 - O brownie O cola
 - O chocolate ice cream O pineapple cheesecake

- Minimum requirements for each day are:
 - **O** 500 cal
 - O 6 oz chocolate
 - O 10 oz sugar
 - O 8 oz fat
- ☐ The objective is to minimize the diet costs

food	calories	chocolate (oz)	sugar (oz)	fat (oz)	costs (cents)
brownie	400	3	2	2	50
chocolate ice cream (scoop)	200	2	2	4	20
cola (bottle)	150	0	4	1	30
pineapple cheesecake (piece)	500	0	4	5	80

PROBLEM FORMULATION

- □ Objective of the problem is to minimize the total costs of the diet
- □ Decision variables are defined for each day's

purchases

- $x_1 = number of brownies$
- x_2 = number of chocolate ice cream scoops
- x_3 = number of bottles of soda
- x_4 = number of pineapple cheesecake pieces

PROBLEM FORMULATION

☐ The problem statement is

min
$$Z = 50 x_1 + 20 x_2 + 30 x_3 + 80 x_4$$

s.t.
 $400 x_1 + 200 x_2 + 150 x_3 + 500 x_4 \ge 500 \text{ cal}$
 $3 x_1 + 2 x_2 \ge 6 \text{ oz}$
 $2 x_1 + 2 x_2 + 4 x_3 + 4 x_4 \ge 10 \text{ oz}$
 $2 x_1 + 4 x_2 + x_3 + 5 x_4 \ge 8 \text{ oz}$
 $x_i \ge 0 \quad i = 1,4$

☐ The dual problem is

max
$$W = 500 y_1 + 6 y_2 + 10 y_3 + 8 y_4$$

s.t.
 $400 y_1 + 3 y_2 + 2 y_3 + 2 y_4 \le 50$ brownie
 $200 y_1 + 2 y_2 + 2 y_3 + 4 y_4 \le 20$ ice cream
 $150 y_1 + 4 y_3 + y_4 \le 30$ soda
 $500 y_1 + 4 y_3 + 5 y_4 \le 80$ cheesecake
 $y_1, y_2, y_3, y_4 \ge 0$

INTERPRETATION OF THE DUAL

- We consider a salesperson of "nutrients" who is interested in assuming that each dieter meets daily requirements by purchasing calories, sugar, fat and chocolate as "goods"
- ☐ The decision is to determine the prices charged
 - y_i = price per unit of required nutrient to sell to dieters
- \Box Objective of the salesperson is to set the prices y_i so as to maximize revenues from selling to the dieter the daily ration of required nutrients

INTERPRETATION OF DUAL

- □ Now, the dieter can purchase a brownie for 50 ¢ and have 400 cal, 3 oz of chocolate, 2 oz of sugar and 2 oz of fat
- \Box The sales price y_i must be set sufficiently low to entice the buyer to get the required nutrients from the brownie:

$$400y_1 + 3y_2 + 2y_3 + 2y_4 \le 50 \leftarrow \frac{brownie}{constraint}$$

☐ We derive similar constraints for the ice cream, the soda and the cheesecake

DUAL PROBLEMS

max
$$Z = \underline{c}^T \underline{x}$$

s.t.
 $\underline{A}\underline{x} \leq \underline{b}$
 $\underline{x} \geq \underline{0}$
min $W = \underline{b}^T \underline{y}$
s.t.
 $\underline{A}^T \underline{y} \geq \underline{c}$
 $\underline{y} \geq \underline{0}$ (D)

WEAK DUALITY THEOREM

 \square For any \underline{x} feasible for (P) and any \underline{y} feasible for

(D), the following relation is satisfied

$$\underline{c}^T \underline{x} \leq \underline{b}^T \underline{y}$$

□ Proof:

$$\underline{A}^T \underline{y} \geq \underline{c} \Rightarrow \underline{c}^T \leq \underline{y}^T \underline{A} \Rightarrow \underline{c}^T \underline{x} \leq \underline{y}^T \underline{A} \underline{x}$$

$$\underline{c}^T \underline{x} \leq \underline{y}^T \underline{A} \underline{x} \leq \underline{y}^T \underline{b} = \underline{b}^T \underline{y}$$

COROLLARY 1 OF THE WEAK DUALITY THEOREM

$$\underline{x}$$
 is feasible for $(P) \Rightarrow \underline{c}^T \underline{x} \leq y^T \underline{b}$

for any feasible
$$\underline{y}$$
 for (D)

$$\underline{c}^T \underline{x} \leq y^{*T} \underline{b} = min W$$

for any feasible
$$\underline{x}$$
 for (P) ,

$$\underline{c}^T \underline{x} \leq \min W$$

COROLLARY 2 OF THE WEAK DUALITY THEOREM

$$\underline{y}$$
 is feasible for $(D) \Rightarrow \underline{c}^T \underline{x} \leq \underline{y}^T \underline{b}$

for every feasible \underline{x} for (P)

$$max Z = max \underline{c}^T \underline{x} = \underline{c}^T \underline{x}^* \leq \underline{y}^T \underline{b}$$

for any feasible
$$\underline{y}$$
 of (D) ,

$$\underline{y}^T\underline{b} \geq max Z$$

COROLLARIES 3 AND 4 OF THE WEAK DUALITY THEOREM

If (P) is feasible and max Z is unbounded, i.e.,

$$Z \rightarrow +\infty$$

then, (D) has no feasible solution.

If (D) is feasible and min Z is unbounded, i.e.,

$$Z \rightarrow -\infty$$
,

then, (P) is infeasible.

DUALITY THEOREM APPLICATION

□ Consider the maximization problem

$$\max Z = x_{1} + 2x_{2} + 3x_{3} + 4x_{4} = \underbrace{\begin{bmatrix} 1, 2, 3, 4 \end{bmatrix}}_{\underline{x}} \underline{x}$$
s.t.
$$\begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 1 & 3 & 2 \end{bmatrix} \underline{x} \leq \begin{bmatrix} 20 \\ 20 \end{bmatrix}$$

DUALITY THEOREM APPLICATION

☐ The corresponding dual is given by

min
$$W = \underline{b}^T \underline{y}$$

s.t.
$$\underline{A}^T \underline{y} \geq \underline{c}$$

$$y \geq \underline{0}$$

☐ With the appropriate substitutions, we obtain

DUALITY THEOREM APPLICATION

min

$$W = 20 y_1 + 20 y_2$$

s.t.

$$y_1 + 2y_2 \ge 1$$

$$2y_1 + y_2 \ge 2$$

$$2y_1 + 3y_2 \ge 3$$

$$3y_1 + 2y_2 \ge 4$$

$$y_1 \geq \theta, y_2 \geq \theta$$

□ Consider the primal decision

$$x_i = 1, i = 1, 2, 3, 4;$$

decision is feasible for (P) with

$$Z = \underline{c}^T \underline{x} = 10$$

☐ The dual decision

$$y_i = 1, i = 1,2$$

is feasible for (D) with

$$W = \underline{b}^T y = 40$$

DUALITY THEOREM APPLICATION

☐ Clearly,

$$Z(x_1,x_2,x_3,x_4) = 10 \le 40 = W(y_1,y_2)$$

and so clearly, the feasible decision for (P) and (D)

satisfy the Weak Duality Theorem

☐ Moreover, we have

corollary
$$1 \Rightarrow 10 \leq \min W = W(y_1^*, y_2^*)$$

corollary 2
$$\Rightarrow$$
 max $Z = Z(x_1^*, x_2^*, x_3^*, x_4^*) \leq \underline{b}^T \underline{y} = 40$

COROLLARIES 5 AND 6

(P) is feasible and (D) is infeasible, then,

(P) is unbounded

(D) is feasible and (P) is infeasible, then,

(D) is unbounded

☐ Consider the primal dual problems:

$$max \ Z = x_{1} + x_{2}$$
s.t.
$$-x_{1} + x_{2} + x_{3} \le 2$$

$$-2x_{1} + x_{2} - x_{3} \le 1$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

$$min \ W = 2y_{1} + y_{2}$$
s.t.
$$-y_{1} - 2y_{2} \ge 1$$

$$y_{1} + y_{2} \ge 1$$

$$y_{1} - y_{2} \ge 0$$

$$y_{1}, y_{2} \ge 0$$

□ Now

$$\underline{x} = \underline{\theta}$$
 is feasible for (P)

$$\underline{x} = \underline{\theta}$$
 is feasible for (P)

but

$$-y_1-2y_2\geq 1$$

is impossible for (D) since it is inconsistent with

$$y_1, y_2 \geq \theta$$

- □ Since (D) is infeasible, it follows from Corollary 5 that $Z \to \infty$
- \square You are able to show this result by solving (P) using the simplex scheme

OPTIMALITY CRITERION THEOREM

 \square We consider the primal-dual problems (P) and (D) with

$$\underline{x}^{\theta} \text{ is feasible for } (P) \\
\underline{y}^{\theta} \text{ is feasible for } (D) \\
\underline{c}^{T}\underline{x}^{\theta} = \underline{b}^{T}\underline{y}^{\theta}$$

$$\underline{x}^{\theta} \text{ is optimal for } (P) \\
\Rightarrow \text{ and } \\
\underline{y}^{\theta} \text{ is optimal for } (D)$$

☐ We next provide the proof:

$$\underline{x}^{\theta}$$
 is feasible for (P) Weak Duality \underline{y}^{θ} is feasible for (D) $\Longrightarrow_{Theorem}$ $\underline{c}^{T}\underline{x}^{\theta} \leq \underline{b}^{T}\underline{y}^{\theta}$

OPTIMALITY CRITERION THEOREM

but we are given that

$$\underline{c}^{T} \underline{x}^{\theta} = \underline{b}^{T} \underline{y}^{\theta}$$

and so it follows that \forall feasible \underline{x} with \underline{y}^{θ} feasible

$$\underline{c}^{T} \underline{x} \leq \underline{b}^{T} \underline{y}^{\theta} = \underline{c}^{T} \underline{x}^{\theta}$$

and so \underline{x}^{θ} is *optimal*;

similarly, \forall feasible \underline{y} with \underline{x}^{θ} feasible

$$\underline{b}^T y \geq \underline{c}^T \underline{x}^0 = \underline{b}^T y^0$$

and so it follows that y^{θ} is optimal

MAIN DUALITY THEOREM

(P) is feasible and (D) is feasible; then,

 $\exists \underline{x}^*$ feasible for (P) which is optimal and

 $\exists \underline{y}^*$ feasible for (D) which is optimal such that

$$\underline{c}^T \underline{x}^* = \underline{b}^T \underline{y}^*$$

 \square \underline{x} * and \underline{y} * are optimal for (P) and (D) respectively, if and only if

$$\boldsymbol{\theta} = \left(\underline{\boldsymbol{y}}^{*T} \underline{\boldsymbol{A}} - \underline{\boldsymbol{c}}^{T} \right) \underline{\boldsymbol{x}}^{*} + \underline{\boldsymbol{y}}^{*T} \left(\underline{\boldsymbol{b}} - \underline{\boldsymbol{A}} \underline{\boldsymbol{x}}^{*} \right)$$

$$= y^{*T}\underline{b} - \underline{c}^{T}\underline{x}^{*}$$

□ We prove this equivalence result by defining the slack variables $\underline{u} \in \mathbb{R}^m$ and $\underline{v} \in \mathbb{R}^n$ such that \underline{x} and \underline{y} are feasible; at the optimum,

$$\underline{A}\underline{x}^* + \underline{u}^* = \underline{b} \qquad \underline{x}^*, \, \underline{u}^* \geq \underline{0}$$

$$\underline{A}^T \underline{y}^* - \underline{v}^* = \underline{c} \quad \underline{y}^*, \underline{v}^* \geq \underline{\theta}$$

where the optimal values of the slack variables

 \underline{u}^* and \underline{v}^* depend on the optimal values

$$\underline{x}$$
 * and \underline{y} *

□ Now,

$$\underline{y}^{*T}\underline{A}\underline{x}^{*} + \underline{y}^{*T}\underline{u}^{*} = \underline{y}^{*T}\underline{b} = \underline{b}^{T}\underline{y}^{*}$$

$$\underline{x}^{*T}\underline{A}^{T}\underline{y}^{*} - \underline{x}^{*T}\underline{v}^{*} = \underline{x}^{*T}\underline{c} = \underline{c}^{T}\underline{x}^{*}$$

$$\underline{y}^{*T}\underline{A}\underline{x}^{*}$$

□ This implies that

$$\underline{y}^{*T}\underline{u}^{*} + \underline{v}^{*T}\underline{x}^{*} = \underline{b}^{T}\underline{y}^{*} - \underline{c}^{T}\underline{x}^{*}$$

■ We need to prove optimality which is true if and

only if

$$\underline{y}^{*T}\underline{u}^* + \underline{v}^{*T}\underline{x}^* = 0$$

☐ However,

$$\underline{x}^*, \underline{y}^* \text{ are optimal}$$

$$\xrightarrow{Main}$$

$$Duality Theorem$$

$$\underline{c}^T \underline{x}^* = \underline{b}^T \underline{y}^* \Rightarrow \underline{y}^{*T} \underline{u}^* + \underline{v}^{*T} \underline{x}^* = 0$$

☐ Also,

$$\underline{y}^{*T}\underline{u}^{*} + \underline{v}^{*T}\underline{x}^{*} = 0 \implies \underline{b}^{T}\underline{y}^{*} = \underline{c}^{T}\underline{x}^{*}$$

* is antimal for (D) and n * is anti-

 \underline{x}^* is optimal for (P) and \underline{y}^* is optimal for (D)

■ Note that

$$\underline{x}^*, \underline{y}^*, \underline{u}^*, \underline{v}^* > 0 \Rightarrow component - wise each element \geq 0$$

$$y^{*T}\underline{u}^* + \underline{v}^*\underline{x}^* = 0 \Rightarrow y_i^*u_i^* = 0 \forall i = 1, ..., m$$

and
$$v_{j}^{*}x_{j}^{*} = 0 \ \forall j = 1, ..., n$$

☐ At the optimum,

$$y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n}a_{ij}x_{j}^{*}\right)=0$$
 $i=1,...,m$

and

$$x_{j}^{*}\left(\sum_{i=1}^{m}a_{ji}y_{i}^{*}-c_{j}\right)=0 \quad j=1,...,n$$

 \square Hence, for i = 1, 2, ..., m

$$y_i^* > \theta \Rightarrow b_i = \sum_{i=1}^n a_{ij} x_j^*$$

and

$$b_i - \sum_{j=1}^m a_{ij} x_i^* > 0 \Rightarrow y_i^* = 0$$

 \square Similarly for j = 1, 2, ..., n

$$x_i^* > 0 \Rightarrow \sum_{i=1}^m a_{ji} y_i^* = c_j$$

and

$$\sum_{i=1}^{m} a_{ji} y_{i}^{*} - c_{j} > 0 \Rightarrow x_{j}^{*} = 0$$

$$max \qquad Z = x_1 + 2x_2 + 3x_3 + 4x_4$$

s.t.

$$x_{1} + 2x_{2} + 2x_{3} + 3x_{4} \leq 20$$

$$2x_{1} + x_{2} + 3x_{3} + 2x_{4} \leq 20$$

$$2x_1 + x_2 + 3x_3 + 2x_4 \le 20$$

$$x_i \geq 0 \quad i = 1, \dots, 4$$

min
$$W = 20y_1 + 20y_2$$
s.t.
$$y_1 + 2y_2 \ge 1$$

$$2y_1 + y_2 \ge 2$$

$$2y_1 + 3y_2 \ge 3$$

$$3y_1 + 2y_2 \ge 4$$

$$y_1, y_2 \ge 0$$

$$\underline{x}^*, \underline{y}^* optimal \Rightarrow$$

$$y_{1}^{*}\left(20-x_{1}^{*}-2x_{2}^{*}-2x_{3}^{*}-3x_{4}^{*}\right)=0$$

$$y_{2}^{*}\left(20-2x_{1}^{*}-x_{2}^{*}-3x_{3}^{*}-2x_{4}^{*}\right)=0$$

$$\underline{y}^* = \begin{bmatrix} 1.2 \\ 0.2 \end{bmatrix}$$
 is given as an optimal solution with

$$min W = 28$$

$$x_{1}^{*} + 2x_{2}^{*} + 2x_{3}^{*} + 3x_{4}^{*} = 20$$

$$2x_{1}^{*} + x_{2}^{*} + 3x_{3}^{*} + 2x_{4}^{*} = 20$$

$$y_{1}^{*} + 2y_{2}^{*} = 1.2 + 0.4 > 1 \Rightarrow x_{1}^{*} = 0$$

$$2y_{1}^{*} + y_{2}^{*} = 2.4 + 0.2 > 2 \Rightarrow x_{2}^{*} = 0$$

$$2y_{1}^{*} + 3y_{2}^{*} = 2.4 + 0.6 = 3$$

$$3y_{1}^{*} + 2y_{2}^{*} = 3.6 + 0.4 = 4$$
so that
$$2x_{3}^{*} + 3x_{4}^{*} = 20 \Rightarrow x_{3}^{*} = 4$$

$$3x_{3}^{*} + 2x_{4}^{*} = 20 \Rightarrow x_{4}^{*} = 4$$

 $3x_{3}^{*}+2x_{4}^{*}=20$ $\Rightarrow x_{4}=4$ \Rightarrow Level 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPLEMENTARY SLACKNESS CONDITION APPLICATIONS

- \square Key uses of *c.s. conditions* are
 - O finding optimal (P) solution given optimal (D) solution and vice versa
 - verification of optimality of solution (whether a feasible solution is optimal)
- ☐ We can start with a feasible solution and attempt to construct an optimal dual solution; if we suc
 - ceed, then the feasible primal solution is optimal

DUALITY

$$Z = \underline{c}^T \underline{x}$$

s.t.

$$\underline{A}\underline{x} \leq \underline{b}$$

$$\underline{x} \geq \underline{\theta}$$

min

$$W = \underline{b}^T \underline{y}$$

s.t.

$$\underline{A}^{T} \underline{y} \geq \underline{c} \\
\underline{y} \geq \underline{0}$$

$$\underline{y} \geq \underline{0}$$

DUALITY

☐ Suppose the primal problem is minimization, then,

min
$$Z = \underline{c}^T \underline{x}$$
 (P)

s.t. $\underline{A}\underline{x} \geq \underline{b}$
 $\underline{x} \geq \underline{0}$

max $W = \underline{b}^T \underline{y}$

s.t. $\underline{A}^T \underline{y} \leq \underline{c}$
 $\underline{y} \geq \underline{0}$

INTERPRETATION

☐ The economic interpretation is

$$Z^* = max Z = \underline{c}^T \underline{x}^* = \underline{b}^T \underline{y}^* = W^* = min W$$

$$b_i - constrained resource quantities$$

$$y^*_i - optimal dual variables$$

$$i = 1, 2, ..., m$$

☐ Suppose, we change

$$b_i \rightarrow b_i + \Delta b_i \Rightarrow \Delta Z = y_i^* \Delta b_i$$

□ In words, the optimal dual variable for each primal constraint gives the net change in the optimal value of the objective function Z for a one unit change in the constraint on resources

INTERPRETATION

- ☐ Economists refer to the dual variable as the
 - shadow price on the constraint resource
- ☐ The *shadow price* determines the value/worth of
 - having an additional quantity of a resource
- □ In the previous example, the optimal dual
 - variables indicate that the worth of another unit
 - of resource 1 is 1.2 while that of another unit of
 - resource 2 is 0.2

☐ We start out with

 \square To find (D), we first put (P) in symmetric form

$$\underline{x} \geq 0$$

☐ Let

$$\underline{y} = \underline{y}_{+} - \underline{y}_{-}$$

☐ We rewrite the problem as

$$min W = \underline{b}^T \underline{y}$$

s.t.

$$\underline{A}^T \underline{y} \geq \underline{c}$$

y is unsigned

 \Box The *c.s.* conditions apply

$$\underline{x}^{*T}\left(\underline{A}^{T}\underline{y}^{*}-\underline{c}\right)=\underline{\theta}$$

EXAMPLE 5: THE PRIMAL

s.t.
$$max Z = x_1 - x_2 + x_3 - x_4$$

$$y_1 \leftrightarrow x_1 + x_2 + x_3 + x_4 = 8$$

$$y_2 \leftrightarrow x_1 \qquad \leq 8$$

$$y_3 \leftrightarrow \qquad x_2 \qquad \leq 4$$

$$y_4 \leftrightarrow \qquad -x_2 \qquad \leq 4$$

$$y_5 \leftrightarrow \qquad \qquad x_3 \qquad \leq 4$$

$$y_6 \leftrightarrow \qquad -x_3 \qquad \leq 2$$

$$y_7 \leftrightarrow \qquad \qquad x_4 \leq 10$$

$$x_1, x_4 \geq 0$$

$$x_2, x_3 \quad unsigned$$

EXAMPLE 5: THE DUAL

$$min W = 8y_1 + 8y_2 + 4y_3 + 4y_4 + 4y_5 + 2y_6 + 10y_7$$

s.t.
$$x_{1} \leftrightarrow y_{1} + y_{2} \geq 1$$

$$x_{2} \leftrightarrow y_{1} + y_{3} - y_{4} = -1$$

$$x_{3} \leftrightarrow y_{1} + y_{5} - y_{6} = 1$$

$$x_{4} \leftrightarrow y_{1} + y_{7} \geq -1$$

$$y_{2}, \dots, y_{7} \geq 0$$

y unsigned

☐ We are given that

$$\underline{x}^* = \begin{bmatrix} 8 \\ -4 \\ 4 \\ 0 \end{bmatrix}$$

is optimal for (P)

 \Box Then the c.s. conditions obtain

$$x_{1}^{*}(y_{1}^{*}+y_{2}^{*}-1)=0$$

so that

$$x_{1}^{*} = 8 > \theta \implies y_{1}^{*} + y_{2}^{*} = 1$$

and so $y_{2}^{*} = 1 - y_{1}^{*}$

 \Box The other c.s. conditions require

$$y_{i}^{*}\left(\sum_{j=1}^{4}a_{ij}x_{j}^{*}-b_{i}\right)=0$$

 \square Now, $x_4^* = \theta$ implies $x_4^* - 10 < \theta$ and so $y_7^* = \theta$

 \square Also, $x_3^* = 4$ implies

$$y_{6}^{*} = 0$$

 \Box We similarly use the *c.s. conditions*

$$x \int_{i=1}^{*} a_{ji} y - c_{j} = 0$$

to provide implications on the y_i^* variables

 \square Since $x_2^* = -4$, then we have

$$y_3^* = \theta$$

 \square Now, with $y_{7}^{*} = \theta$ we have

$$y_{1}^{*} > -1$$

■ Now, we have already shown that

$$y_{2}^{*} = 1 - y_{1}^{*}$$

□ Suppose that

$$y_1^* = 1$$

and so,

$$y_2^* = 0$$

☐ Furthermore,

$$y_{1}^{*} + y_{3}^{*} - y_{4}^{*} = 1 - y_{4}^{*} = -1$$

implies that

$$y_{A}^{*} = 2$$

☐ Also

$$y_1^* + y_5^* - y_6^* = 1$$

implies

$$1+y_5^*=1$$

and so

$$y_5^* = \theta$$

$$\Box$$
 Therefore, as $W = \underline{b}^T \underline{y}$

$$W(\underline{y}^*) = (8)(1)+(8)(\theta)+(4)(\theta)+(4)(2)+$$

$$(4)(\theta)+(2)(\theta)+(10)(\theta)$$

$$= 16$$

and so

$$W^* = 16 = Z^* \Leftrightarrow \text{optimality of } (P) \text{ and } (D)$$

PRIMAL - DUAL TABLE

primal (maximize)	dual (minimize)
\underline{A} (coefficient matrix)	\underline{A}^{T} (transpose of the coefficient matrix)
\underline{b} (right-hand side vector)	<u>b</u> (cost vector)
<u>c</u> (price vector)	\underline{c} (right hand side vector)
<i>i</i> th constraint is = type	the dual variable y_i is unrestricted in sign
i^{th} constraint is \leq type	the dual variable $y_i \ge \theta$
i^{th} constraint is \geq type	the dual variable $y_i \le \theta$
x_j is unrestricted	j^{th} dual constraint is = type
$x_j \geq 0$	j th dual constraint is ≥ type
$x_{j} \leq \theta$	j th dual constraint is ≤ type