
ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 1

George Gross
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

ECE 307- Techniques for Engineering 
Decisions

Lecture 4. Duality Concepts in Linear Programming



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 2

q Definition: A LP is in symmetric form if all the 

variables are restricted to be nonnegative and all 

the constraints are inequalities of the type:

DUALITY

objective type 
corresponding 
inequality type 

max ≤

min ≥
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q We first define the primal and dual problems

DUALITY  DEFINITIONS
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q The problems (P ) and (D) are called the symmetric 

dual LP problems; we restate them as

DUALITY  DEFINITIONS

    

max Z = c 1 x 1 + c 2 x 2
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DUALITY  DEFINITIONS

     

min W = b 1 y 1 + b 2 y 2 + ... + b m y m 

s.t.

a 11 y 1 + a 21  y 2 + ...  + a m1  y m ≥ c 1

a 12 y 1 + a 22  y 2 + ...  + a m 2  y m ≥ c 2
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

warehouses
retail stores

R 1 R 2 R 3

W 1 2 4 3

W 2 5 3 4

W 1

W 2

R 1

R 2

R 3

shipment cost coefficients
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

q We are given that the supplies stored in warehouses    

satisfy 

q We are also given the demands needed to be met at 

the retail stores                            :

  

supply at W 1 ≤ 300

supply at W 2 ≤ 600

   

demand at R 1 ≥ 200

demand at R 2 ≥ 300

demand at R 3 ≥ 400

1 2W Wand

, ,1 2 3R R Rand
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EXAMPLE  1:  MANUFACTURER  
TRANSPORTATION  PROBLEM

q The problem is to determine the least-cost shipping 

schedule

q We define the decision variable 

q The shipping costs may be viewed as

   
x i j = quantity shipped from W i to R j i = 1,2, j = 1,2,3

 
c i j = element i, j of  the transportation cost matrix
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FORMULATION  STATEMENT
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DUAL  PROBLEM  SETUP  USING 
SYMMETRIC  FORM
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DUAL  PROBLEM  SETUP
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q The moving company proposes to the manufac-
turer to:

q To convince the manufacturer to get the 
business, the mover ensures that the delivery 
fees cannot exceed the transportation costs the 
manufacturer would incur (the dual constraints)

THE  DUAL  PROBLEM  INTERPRETATION 

1 1

2 2

1 3

2 4

3 5

300 /
600 /
200 /
300 /
400 /

W y unit
W y unit
R y unit
R y unit
R y unit

buy all the units at at
buy all the units at at
sell all the units at at
sell all the units at at
sell all the units at at
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THE  DUAL  PROBLEM  INTERPRETATION 

q The mover wishes to maximize profits, i.e.,

- + =
- + =
- + =

- + =
- + =
- + =

1 3 11

1 4 12
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2 4 22
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= - - + + +1 2 3 4 5300 600 200 300 400

revenues costs dual cost objective  function

maxW y y y y y
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q Resource requirements

EXAMPLE  2:  FURNITURE  PRODUCTS

item sales price ($)
desks 60
tables 30
chairs 20

requirements

lumber board

labor
carpentry

finishing
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q The Dakota Furniture Company manufacturing:

q We assume that the demand for desks, tables and 
chairs is unlimited and the two required resources 
– lumber and labor – are already purchased 

q The decision problem is to maximize total revenues

EXAMPLE  2:  FURNITURE  PRODUCTS

resource desk table chair available

lumber board (ft ) 8 6 1 48

finishing (h) 4 2 1.5 20

carpentry (h) 2 1.5 0.5 8
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q We define decision variables

q The Dakota problem is

PRIMAL  AND  DUAL  PROBLEM  
FORMULATION  

x number  of   desks  produced
x number  of   tables  produced
x = number  of   chairs  produced

1

2

3

=
=

+ +

« + + £
« + + £
« + + £

³

1 2 3

1 1 2 3

2 1 2 3

3 1 2 3

1 2 3

60 30 20

8 6 48
4 2 1.5 20
2 1.5 0.5 8

max Z = x x x
s.t.
y x x x lumber
y x x x finishing

carpentryy x x x
x , x , x 0
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PRIMAL  AND  DUAL  PROBLEM  
FORMULATION

q The dual problem is

+ +
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1 2 3
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y , y , y 0
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PRIMAL  AND  DUAL  PROBLEM  
FORMULATION
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q An entrepreneur wishes to purchase all of 

Dakota�s resources

q He needs, therefore, to determine the prices to 

pay for each unit of each resource

q We solve the Dakota dual problem to determine

y 1, y 2 and y 3

INTERPRETATION  OF  THE  
DUAL  PROBLEM

y 1 = price  paid  per ft  of  lumber board 
y 2 = price  paid  per  h  of   finishing labor

y 3 = price  paid  per  h  of   carpentry labor
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q To convince Dakota to sell the raw resources, the 

resource prices must be set sufficiently high

q For example, the entrepreneur must offer Dakota 

at least $ 60 for a combination of resources that 

consists of 8 ft of lumber board, 4 h of finishing 

and 2 h of carpentry, since Dakota could use this 

combination to sell a desk for $ 60; this requires 

es the following dual constraint:

INTERPRETATION  OF  THE  
DUAL  PROBLEM

y y y1 2 38 4 2 60+ + ³
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q In the same way, we obtain the two additional 

constraints for a table and for a chair

q The i th primal variable is associated with the i th

constraint in the dual problem statement 

q The j th dual variable is associated with the  j th

constraint in the primal problem statement

INTERPRETATION  OF  DUAL PROBLEM



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 22

q A new diet requires that all food eaten come from 

one of the four “basic food groups”:

m chocolate cake

m ice cream

q The four foods available for consumption are

m brownie

m chocolate ice cream

EXAMPLE  3:  DIET  PROBLEM

m soda

m cheesecake 

m cola

m pineapple cheesecake
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EXAMPLE  3:  DIET  PROBLEM

q Minimum requirements for each day are:

m 500 cal

m 6 oz chocolate

m 10 oz sugar

m 8 oz fat

q The objective is to minimize the diet costs
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EXAMPLE  3:  DIET  PROBLEM

food calories
chocolate

(oz)
sugar (oz) fat (oz)

costs 
(cents)

brownie 400 3 2 2 50

chocolate 
ice cream
(scoop)

200 2 2 4 20

cola 
(bottle) 150 0 4 1 30

pineapple 
cheesecake

(piece)
500 0 4 5 80



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 25

q Objective of the problem is to minimize the total 

costs of the diet

q Decision variables are defined for each day’s 

purchases

PROBLEM  FORMULATION

x number  of  brownies

x number  of  chocolate ice cream scoops

x number  of  bottles of  soda

x number of  pineapple cheesecake pieces

1

2

3

4

=

=

=

=  
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PROBLEM  FORMULATION

³ 1,4ix 0 i =

q The problem statement is

+ + +1 2 3 450 20 30 80min Z = x x x x

s.t.

+ ³

+ ³

+ ³

+ ³

1 2 3 4

1 2

1 2 3 4

1 2 3 4

400 200 + 150 500 500

3 2 6

2 2 + 4 4 10

2 4 + 5 8

x x x + x cal

x x oz

x x x + x oz

x x  x + x oz
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q The dual problem is

EXAMPLE  3:  DIET  PROBLEM

y , y , y , y 01 2 3 4 ³

max W = y y y y1 2 3 4500 6 10 8+ + +

s.t.

y y y + y

y y y y

y y + y

y y + y

1 2 3 4

1 2 3 4

1 3 4

1 3 4

400 3 + 2 2 50

200 2 2 + 4 20

150 + 4 30

500 + 4 5 80

+ £

+ + £

£

£

brownie

ice cream

soda

cheesecake
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q We consider a salesperson of �nutrients� who is 

interested in assuming that each dieter meets daily 

requirements by purchasing calories, sugar, fat 

and chocolate as �goods�

q The decision is to determine the prices charged

y i =   price per unit of required nutrient to sell to dieters

q Objective of the salesperson is to set the prices  y i

so as to maximize revenues from selling to the 

dieter  the daily ration of required nutrients

INTERPRETATION  OF  THE  DUAL
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q Now, the dieter can purchase a brownie for 50 ¢
and have 400 cal, 3 oz of chocolate, 2 oz of sugar 

and 2 oz of fat

q The sales price  y i must be set sufficiently low to 

entice the buyer to get the required nutrients from 

the brownie:

q We derive similar constraints for the ice cream, 

the soda and the cheesecake

INTERPRETATION  OF  DUAL

y y y y1 2 3 4400 3 2 2 50+ + + £
brownie 

constraint
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DUAL  PROBLEMS

(P)

(D)

Tmax Z c x=

£A x b
s.t.

³x 0

min

s.t.

TW = b y

TA y c³

y 0³
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q For any      feasible for (P ) and any      feasible for   

(D ), the following relation is satisfied

q Proof:

T T TT T

T T TT

A y c c y A c x y A x

c x y A x y b b y

³ Þ £ Þ £

£ £ =

WEAK  DUALITY  THEOREM

TTc x b y£

x y
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COROLLARY  1 OF  THE  WEAK  
DUALITY  THEOREM

( )

( )

TTx is feasible for P c x y b

for  any  feasible y for D

Þ £

TTc x y b min W*£ =

( )
T

for  any  feasible x for P ,

c x min W£
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COROLLARY  2 OF  THE  WEAK  
DUALITY  THEOREM

( )

( )

TTy is feasible for D c x y b

for  every  feasible x for P

Þ £

*= = £ TT Tmax Z max c x c x y b

( )
T

for  any  feasible y of D ,

y b max Z³
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If ( P ) is feasible and max Z is unbounded, i.e.,

then, ( D ) has no feasible solution.

If  ( D ) is feasible and min Z is unbounded, i.e.,

then, ( P ) is infeasible.

COROLLARIES  3 AND  4 OF  THE  
WEAK  DUALITY  THEOREM

Z +¥® ,

Z ¥-® ,
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q Consider the maximization problem

DUALITY  THEOREM  APPLICATION

   

max Z = x 1 + 2x 2 + 3x 3 + 4x 4 = 1, 2, 3, 4⎡⎣ ⎤⎦
c T

! "# $#
x

s.t.

1 2 2 3

2 1 3 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A
! "## $##

x ≤
20

20

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

b
!"# $#

x ≥ 0

(P )
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q The corresponding dual is given by

q With the appropriate substitutions, we obtain

DUALITY  THEOREM  APPLICATION

(D )

T

T

min W = b y

s.t.

A y c

y 0

³

³
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DUALITY  THEOREM  APPLICATION

+

³

³

³

³

³ ³

1 2

1 2

1 2

1 2

1 2

1 2

20 20

 + 2 1

2  + 2

2  + 3 3

3  + 2 4

min W = y y

s.t.

y y

y y

y y

y y

y 0, y 0
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q Consider the primal decision

decision is feasible for (P) with

q The dual decision

is feasible for (D) with

GENERALIZED  FORM  OF  THE  DUAL

1, 1,2,3,4 ;ix i= =

1, 1,2iy i= =

10TZ c x= =

40TW b y= =
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DUALITY  THEOREM  APPLICATION

q Clearly,

and so clearly, the feasible decision for (P) and (D)

satisfy the Weak Duality Theorem

q Moreover, we have

( ) ( )£1 2 3 4 1 210 40 =Z x ,x , x , x = W y , y

( ) Tcorollary max Z = Z x ,x , x , x b y =* * * *Þ £1 2 3 42 40

( )corollary minW W y , y* *Þ £ = 1 21 10  
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COROLLARIES  5 AND  6

(P) is feasible and (D) is infeasible, then,

(P) is unbounded

(D) is feasible and (P) is infeasible, then,

(D) is unbounded
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q Consider the primal dual problems:

q Now

EXAMPLE

( )x 0 is feasible for P=

1 2

1 2

1 2

1 2

1 2

2

. .
2 1

( )
1

,

min W y y

s t

y y
D

y y

y y 0

y y 0

= + ü
ï
ï
ï

- - ³ ï
ý

+ ³ ï
ï- ³ ï
ï³ þ

1 2

1 2 3

1 2 3

1 2 3

. .

2 ( )

2 1

, ,

max Z x x

s t

x x x P

x x x

x x x 0

ü= +
ï
ï
ï
ï- + + £ ý
ï

- + - £ ï
ï
ï³ þ
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but

is impossible for (D) since it is inconsistent with

q Since (D) is infeasible, it follows from Corollary 5
that

q You are able to show this result by solving (P)

using the simplex scheme

EXAMPLE

  − y 1 − 2 y 2 ≥ 1

  x = 0 is feasible for (P )

Z ¥  ®

1 2,y y 0³
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q We consider the primal-dual problems (P) and (D) 

with

q We next provide the proof:

OPTIMALITY  CRITERION  THEOREM

0

0

x P
y D

( )
( )

is feasible for
is feasible for

TT 0 0
Weak  Duality

Theorem
c x b yÞ £  

0

0

TT 0 0

x P
y D

c x b y

( )
( )

=

is feasible for
is feasible for

   

x 0 is optimal for (P )
⇒ and

y 0 is optimal for (D)
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OPTIMALITY  CRITERION  THEOREM

but we are given that

and so it follows that

and so        is optimal ;

similarly, 

and so it follows that        is optimal

TT 0 0c x b y=

TT 0 T 0c x b y c x£ =
0x

T TT 0 0b y c x b y³ =
0y

0feasible x with y feasible"

0feasible y with x feasible"
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(P) is feasible and (D) is feasible; then,

MAIN  DUALITY  THEOREM

TTc x b y* *=

x feasible for P which is optimal and( )*$

y feasible for D which is optimal such that( )*$
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

q are optimal for (P) and (D) respectively, 

if and only if

q We prove this equivalence result by defining the 

slack variables                and               such that     

and     are feasible; at the optimum,

 

0 = y ∗ T A− c T( ) x ∗+ y ∗ T b − A x ∗( )
= y ∗ T b − c T x ∗

  

A x ∗ + u ∗ = b x ∗ , u ∗ ≥ 0

A T y ∗ − v ∗ = c y ∗ , v ∗ ≥ 0

x y* *a n d

y
x  v ∈R n

  u ∈R m
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

where the optimal values of the slack variables             

depend on the optimal values  

q Now,

!""""#""""$

T T T T

T T T T T

T

y Ax y u y b b y

x A y x v x c c x

y A x

* * * * * *

* * * * * *

* *

+ = =

- = =

u v* *and

x y* *and
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

q This implies that

q We need to prove optimality which is true if and 

only if

 y
∗T u ∗ + v ∗T x ∗ = b T y ∗ − c T x ∗

 y
∗T u ∗ + v ∗T x ∗ = 0
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q However,

q Also,

( ) ( )

T T T T

Optimality

Criterion Theorem

y u v x 0 b y c x

x is optimal for P and y is optimal for D

* * * * * *

* *

+ = Þ =

COMPLEMENTARY  SLACKNESS  
CONDITIONS

,
Main

Duality Theorem
T T T T

x y are optimal

c x b y y u v x 0

* *

* * * * * *= Þ + =
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

q Note that

q At the optimum,

and

T
i i

j j

x y u v 0 component - wise each element 0

y u v x 0 y u 0 i m

and v x 0 j n

, , ,

1, ... ,

1, ... ,

* * * *

* * * * * *

* *

> Þ ³

+ = Þ = " =

= " =

  
y i

∗ b i − a i j x j
∗

j =1

n

∑⎛
⎝⎜

⎞
⎠⎟
= 0 i = 1, ... , m

  
x j

∗ a ji y i
∗

i =1

m

∑ − c j

⎛
⎝⎜

⎞
⎠⎟
= 0 j = 1, ... , n
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COMPLEMENTARY  SLACKNESS  
CONDITIONS

q Hence, for  i =  1, 2, … , m

and

q Similarly for  j =  1, 2, … , n

and
m

j i i j j
i

a y c 0 x 0
1

* *

=

- > Þ =å

n

i i i j j
j=1

y > 0 b = a x* *Þ å

m

i ji i j
i=1

x > 0 a y = c* *Þ å

m

i i j i i
j

b a x 0 y 0
1

* *

=

- > Þ =å
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EXAMPLE

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4

. .

2 2 3 20

2 3 2 20

1, ... , 4i

max Z x x x x

s t

x x x x

x x x x

x 0 i =

= + + +

+ + + £

+ + + £

³

( )P
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EXAMPLE

min W y y

s t

y y

y y

y y

y y

y y 0

1 2

1 2

1 2

1 2

1 2

1 2

20 20

. .

2 1

2 2

2 3 3

3 2 4

,

= +

+ ³

+ ³

+ ³

+ ³

³

( )D
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EXAMPLE

min W = 28

x y o p tim a l,* * Þ

( )
( )

y x x x x 0

y x x x x 0

1 1 2 3 4

2 1 2 3 4

20 2 2 3

20 2 3 2

* * * * *

* * * * *

- - - - =

- - - - =

y
1.2

0.2
*

é ù
= ê ú

ê úë û
is given as an optimal solution with
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EXAMPLE

so that
3 4 3

3 4 4

2 3 20 4

3 2 20 4

x x x

x x x

* * *

* * *

+ = Þ =

+ = Þ =

x x x x

x x x x

y y x 0

y y x 0

y y

y y

* * * *

* * * *

* * *

* * *

* *

* *

Þ

Þ

1 2 3 4

1 2 3 4

1 2 1

1 2 2

1 2

1 2

+ 2 + 2 + 3 = 20

2 + + 3 + 2 = 20

+ 2 = 1.2 + 0.4 > 1 =

2 + = 2.4 + 0.2 > 2 =

2 + 3 = 2.4 + 0.6 = 3

3 + 2 = 3.6 + 0.4 = 4
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COMPLEMENTARY  SLACKNESS  
CONDITION APPLICATIONS

q Key uses of c.s. conditions are

m finding optimal (P) solution given optimal (D)

solution and vice versa

m verification of optimality of solution (whether a 

feasible solution is optimal)

q We can start with a feasible solution and attempt 

to construct an optimal dual solution; if we suc-

ceed, then the feasible primal solution is optimal
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DUALITY

(P)

(D)

Tmax Z = c x

£A x b
s.t.

³x 0

s.t.
TA y c³

y 0³

Tmin W = b y
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q Suppose the primal problem is minimization, then, 

DUALITY

s.t.

(P)

(D)

Tmin Z = c x

³A x b
³x 0

s.t.
TA y c£

y 0³

Tmax W = b y
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INTERPRETATION

q The economic interpretation is

q Suppose, we change

q In words, the optimal dual variable for each primal 
constraint gives the net change in the optimal 
value of the objective function Z for a one unit 
change in the constraint on resources

T TZ m ax Z c x b y W m inW* * * *= = = = =

i i i i ib b b Z y b*® + D Þ D = D

1,2, ... ,i m=
ib - constrained resource quantities

optimal dual variables*
iy -
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INTERPRETATION

q Economists refer to the dual variable as the 

shadow price on the constraint resource

q The shadow price determines the value/worth of 

having an additional quantity of a resource

q In the previous example, the optimal dual 

variables indicate that the worth of another unit 

of resource 1 is 1.2 while that of another unit of 

resource 2 is 0.2
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GENERALIZED  FORM  OF  THE  DUAL

q We start out with

( P )

max Z =           x

s.t.
A x =      b

x ≥      0

Tc
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GENERALIZED  FORM  OF  THE  DUAL

A b
x

A b

é ù é ù
ê ú ê ú£ê ú ê ú
ê ú ê ú- -ë û ë û

symmetric 
form

y

y

+

-

«

«

q To find (D ), we first put (P ) in symmetric form

Ax b

Ax b

x 0

£

- £ -

³
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q Let

q We rewrite the problem as

q The c.s. conditions apply

GENERALIZED  FORM  OF  THE  DUAL

( )T Tx A y c 0* * - =

y is unsigned

. .

T

T

min W b y
s t
A y c

=

³

 y = y + − y −
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EXAMPLE  5: THE PRIMAL

x x x x
x

x
x

x
x

x
x x 0
x x unsigned

1 2 3 4

1

2

2

3

3

4

1 4

2 3

8
8
4
4
4
2
10

,
,

+ + + =

£

£

- £

£

- £

£
³

y
y
y
y
y
y
y

1

2

3

4

5

6

7

«

«

«

«

«

«

«

1 2 3 4max Z x x x x= - + -
s.t.

( )P
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1 1 2

2 1 3 4

3 1 5 6

4 1 7

x y y

x y y y

x y y y

x y y

« + ³

« + - =

« + - =

« + ³

EXAMPLE  5: THE DUAL

( )D

  min W = 8 y 1 + 8 y 2 + 4 y 3 + 4 y 4 + 4 y 5 + 2 y 6 +10 y 7

s.t.

unsignedy 1

1

1

1

1

-

-

2 7, ...... ,y y 0³
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EXAMPLE  5: c.s. conditions
q We are given that

is optimal for (P)

q Then the c.s. conditions obtain

x

0

8
4
4

*

é ù
ê ú-
ê ú=
ê ú
ê úë û

( )x y y 01 1 2 1* * *+ - =
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EXAMPLE  5: c.s. conditions

so that

and so 

q The other c.s. conditions require

q Now,               implies                         and so

x 0 y y1 1 28 1* * *= > Þ + =

i i j j i
j

y a x b 0
4

1

* *

=

æ ö
- =ç ÷

è ø
å

x 04
* = x 04 10* - < y 07

* =

* *
2 11y y= -
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EXAMPLE  5: c.s. conditions

q Also,             implies

q We similarly use the c.s. conditions 

to provide implications on the        variables

*
3 4x =

*
6y 0=

7
* *

1
j j i i j

i
x a y c 0

=

æ ö
- =ç ÷

è ø
å

*
iy
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EXAMPLE  5: c.s. conditions

q Since                 , then we have

q Now, with              we have

q Now, we have already shown that

*
2 4x = -

*
3y 0=

*
7y 0=

*
1 1y > -

* *
2 11y y= -
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EXAMPLE  5
q Suppose that

and so,

q Furthermore,

implies that

*
1 1y =

*
2y 0=

* * * *
1 3 4 41 1y y y y+ - = - = -

*
4 2y =
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EXAMPLE  5
q Also

implies

and so

*
51 1y+ =

* * *
1 5 6 1y y y+ - =

*
5y 0=
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EXAMPLE  5
q Therefore, as 

and so

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

* 8 1 8 4 4 2

4 2 10

16

W y 0 0

0 0 0

= + + + +

+ +

=

( ) ( )* *16W Z P D= = Û optimality of and

= TW b y
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PRIMAL – DUAL TABLE

primal (maximize) dual (minimize)

A ( coefficient matrix ) A T ( transpose of the coefficient matrix )

b ( right-hand side vector ) b ( cost vector )

c ( price vector ) c ( right hand side vector )

i th constraint is  = type the dual variable  y i is unrestricted in sign

i th constraint is      type the dual variable  y i        0

i th constraint is      type the dual variable   y i        0

x j  is unrestricted j th dual constraint is  = type

x j        0 j th dual constraint is     type

x j        0 j th dual constraint is     type

³

£

³

£

³

£

³

£


