ECE 307- Techniques for Engineering Decisions

Lecture 4. Duality Concepts in Linear Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

DUALITY

\square Definition: A LP is in symmetric form if all the variables are restricted to be nonnegative and all the constraints are inequalities of the type:

ECE 307 © 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DUALITY DEFINITIONS

\square We first define the primal and dual problems

$$
\begin{align*}
& \text { max } \\
& Z=\underline{c}^{\boldsymbol{T}} \underline{x} \\
& \text { s.t. } \\
& \underline{\boldsymbol{A}} \underline{x} \leq \underline{\boldsymbol{b}} \\
& \underline{x} \geq \underline{0} \\
& W=\underline{b}^{T} \underline{y} \\
& \text { s.t. } \\
& \underline{\boldsymbol{A}}^{T} \underline{y} \geq \underline{\boldsymbol{c}} \tag{D}\\
& \underline{y} \geq \underline{0}
\end{align*}
$$

DUALITY DEFINITIONS

\square The problems (P) and (D) are called the symmetric dual LP problems; we restate them as

$$
\max Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

s.t.

$$
\left.\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
x_{1} \geq 0, \quad x_{2} \geq 0, \ldots, \quad x_{n} \geq 0
\end{array}\right\}(P)
$$

DUALITY DEFINITIONS

$$
\min W=b_{1} y_{1}+b_{2} y_{2}+\ldots+b_{m} y_{m}
$$

sot.

$$
\left.\begin{array}{c}
a_{11} y_{1}+a_{21} y_{2}+\ldots+a_{m 1} y_{m} \geq c_{1} \\
a_{12} y_{1}+a_{22} y_{2}+\ldots+a_{m 2} y_{m} \geq c_{2} \\
\vdots \\
a_{1 n} y_{1}+a_{2 n} y_{2}+\ldots+a_{m n} y_{m} \geq c_{n} \\
y_{1} \geq 0, \quad y_{2} \geq 0, \ldots, \quad y_{m} \geq 0
\end{array}\right\}(D)
$$

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

\square We are given that the supplies stored in warehouses
W_{1} and W_{2} satisfy

$$
\begin{aligned}
& \text { supply at } W_{1} \leq 300 \\
& \text { supply at } W_{2} \leq 600
\end{aligned}
$$

\square We are also given the demands needed to be met at the retail stores $\boldsymbol{R}_{1}, \boldsymbol{R}_{2}$, and \boldsymbol{R}_{3} :
demand at $R_{1} \geq 200$
demand at $R_{2} \geq 300$
demand at $R_{3} \geq 400$

EXAMPLE 1: MANUFACTURER TRANSPORTATION PROBLEM

\square The problem is to determine the least-cost shipping

schedule

\square We define the decision variable
$x_{i j}=$ quantity shipped from W_{i} to $R_{j} i=1,2, j=1,2,3$
\square The shipping costs may be viewed as
$c_{i j}=$ element i, j of the transportation cost matrix

FORMULATION STATEMENT

$$
\min Z=\sum_{i=1}^{2} \sum_{j=1}^{3} c_{i j} x_{i j}=2 x_{11}+4 x_{12}+3 x_{13}+5 x_{21}+3 x_{22}+4 x_{23}
$$

s.t.

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13} \leq 300 \\
& x_{21}+x_{22}+x_{23} \leq 600 \\
& x_{11} \quad+x_{21} \quad \geq 200 \\
& \boldsymbol{x}_{12} \quad+\boldsymbol{x}_{22} \quad \geq \mathbf{3 0 0} \\
& \boldsymbol{x}_{13} \\
& +x_{23} \geq 400 \\
& x_{i j} \geq 0 \quad i=1,2, j=1,2,3
\end{aligned}
$$

DUAL PROBLEM SETUP USING SYMMETRIC FORM

$$
\min Z=\sum_{i=1}^{2} \sum_{j=1}^{3} c_{i j} x_{i j}
$$

s.t.

$$
\begin{aligned}
& y_{1} \leftrightarrow-x_{11}-x_{12}-x_{13} \geq-300 \\
& y_{2} \leftrightarrow \\
& y_{3} \leftrightarrow \quad \boldsymbol{x}_{11} \\
& y_{4} \leftrightarrow \\
& x_{12} \\
& -x_{21}-x_{22}-x_{23} \geq-600 \\
& +x_{21} \\
& \geq \quad 200 \\
& y_{5} \leftrightarrow \\
& x_{13} \\
& +x_{23} \geq 400 \\
& x_{i j} \geq 0 \quad i=1,2 \quad j=1,2,3
\end{aligned}
$$

DUAL PROBLEM SETUP

$\max W=-300 y_{1}-600 y_{2}+200 y_{3}+300 y_{4}+400 y_{5}$ sot.

$$
\begin{aligned}
& -y_{1} \quad+y_{3} \\
& -y_{1}+y_{4} \\
& \leq c_{11}=2 \\
& -y_{1} \\
& -y_{2}+y_{3} \quad \leq c_{21}=5 \\
& -y_{2}+y_{4} \\
& +y_{5} \leq c_{13}=3 \\
& \leq c_{12}=4 \\
& -y_{2}+y_{5} \leq c_{23}=4 \\
& y_{i} \geq 0 \quad i=1,2, \ldots, 5
\end{aligned}
$$

THE DUAL PROBLEM INTERPRETATION

The moving company proposes to the manufacturer to:
buy all the 300 units at W_{1} at $y_{1} /$ unit buy all the 600 units at W_{2} at $y_{2} /$ unit sell all the 200 units at R_{1} at $y_{3} /$ unit sell all the 300 units at R_{2} at $y_{4} /$ unit sell all the 400 units at R_{3} at $y_{5} /$ unit \square To convince the manufacturer to get the business, the mover ensures that the delivery fees cannot exceed the transportation costs the manufacturer would incur (the dual constraints)

THE DUAL PROBLEM INTERPRETATION

$$
\begin{aligned}
& -y_{1} \quad+y_{3} \\
& -y_{1} \\
& -y_{1} \\
& -y_{2}+y_{3} \\
& -y_{2} \quad+y_{4} \\
& -y_{2} \\
& +y_{4} \\
& \leq c_{11}=2 \\
& +y_{5} \leq c_{23}=4
\end{aligned}
$$

\square The mover wishes to maximize profits, i.e., revenues - costs \Rightarrow dual cost objective function $\max W=-300 y_{1}-600 y_{2}+200 y_{3}+300 y_{4}+400 y_{5}$

EXAMPLE 2: FURNITURE PRODUCTS

\square Resource requirements

item	sales price (\$)
desks	60
tables	30
chairs	20

EXAMPLE 2: FURNITURE PRODUCTS

\square The Dakota Furniture Company manufacturing:

resource	desk	table	chair	available
lumber board (ft)	8	6	1	48
finishing (h)	4	2	1.5	20
carpentry (h)	2	1.5	0.5	8

\square We assume that the demand for desks, tables and chairs is unlimited and the two required resources - lumber and labor - are already purchased

The decision problem is to maximize total revenues

PRIMAL AND DUAL PROBLEM FORMULATION

\square We define decision variables

$$
\begin{aligned}
& x_{1}=\text { number of desks produced } \\
& x_{2}=\text { number of tables produced } \\
& x_{3}=\text { number of chairs produced }
\end{aligned}
$$

\square The Dakota problem is
$\max Z=60 x_{1}+30 x_{2}+20 x_{3}$
s.t.

\[

\]

PRIMAL AND DUAL PROBLEM FORMULATION

\square The dual problem is

$$
\begin{aligned}
& \min W=48 y_{1}+20 y_{2}+8 y_{3} \\
& \text { s.t. } \\
& 8 y_{1}+4 y_{2}+2 y_{3} \geq 60 \\
& 6 y_{1}+2 y_{2}+1.5 y_{3} \text { desk } \\
& y_{1}+1.5 y_{2}+0.5 y_{3} \geq 20 \\
& \text { chable } \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

PRIMAL AND DUAL PROBLEM FORMULATION

$\max \quad Z=60 x_{1}+30 x_{2}+20 x_{3}$

$$
\begin{aligned}
y_{1} & \leftrightarrow 8 x_{1}+6 x_{2}+\quad x_{3} \leq 48 & \text { lumber } \\
y_{2} & \leftrightarrow 4 x_{1}+2 x_{2}+1.5 x_{3} \leq 20 & \text { finishing } \\
y_{3} & \leftrightarrow 2 x_{1}+1.5 x_{2}+0.5 x_{3} \leq 8 & \text { carpentry } \\
x_{1}, x_{2}, x_{3} & \geq 0 &
\end{aligned}
$$

$\max \quad W=48 y_{1}+20 y_{2}+8 y_{3}$

$$
\begin{aligned}
48 y_{1}+20 y_{2}+8 y_{3} & \geq 60 & \text { desk } \\
6 y_{1}+2 y_{2}+1.5 y_{3} & \geq 30 & \text { table } \\
y_{1}+1.5 y_{2}+0.5 y_{3} & \geq 20 & \text { chair } \\
y_{1}, y_{2}, y_{3} & \geq 0 &
\end{aligned}
$$

INTERPRETATION OF THE DUAL PROBLEM

\square An entrepreneur wishes to purchase all of

 Dakota's resources\square He needs, therefore, to determine the prices to pay for each unit of each resource

$$
\begin{aligned}
& y_{1}=\text { price paid per ft of lumber board } \\
& y_{2}=\text { price paid per } h \text { of finishing labor } \\
& y_{3}=\text { price paid per } h \text { of carpentry labor }
\end{aligned}
$$

\square We solve the Dakota dual problem to determine y_{1}, y_{2} and y_{3}

INTERPRETATION OF THE DUAL PROBLEM

\square To convince Dakota to sell the raw resources, the resource prices must be set sufficiently high
\square For example, the entrepreneur must offer Dakota at least $\$ \mathbf{6 0}$ for a combination of resources that consists of 8 ft of lumber board, $4 \boldsymbol{h}$ of finishing and $2 h$ of carpentry, since Dakota could use this combination to sell a desk for $\$ \mathbf{6 0}$; this requires es the following dual constraint:

$$
8 y_{1}+4 y_{2}+2 y_{3} \geq 60
$$

INTERPRETATION OF DUAL PROBLEM

\square In the same way, we obtain the two additional
constraints for a table and for a chair
\square The $i^{\text {th }}$ primal variable is associated with the $i^{\text {th }}$
constraint in the dual problem statement
\square The $\boldsymbol{j}^{\text {th }}$ dual variable is associated with the $\boldsymbol{j}^{\text {th }}$
constraint in the primal problem statement

EXAMPLE 3: DIET PROBLEM

A new diet requires that all food eaten come from

one of the four "basic food groups":
O chocolate cake \bigcirc soda

O ice cream
O cheesecake
\square The four foods available for consumption are
O brownie
O cola

O chocolate ice cream O pineapple cheesecake

EXAMPLE 3: DIET PROBLEM

\square Minimum requirements for each day are:

O 500 cal

O 6 oz chocolate

O $10 \boldsymbol{o z}$ sugar

O $8 \boldsymbol{o z}$ fat
\square The objective is to minimize the diet costs

EXAMPLE 3: DIET PROBLEM

food	calories	$\begin{gathered} \text { chocolate } \\ (o z) \end{gathered}$	sugar (oz)	fat (oz)	$\begin{gathered} c o s t s \\ (\text { cents) } \end{gathered}$
brownie	400	3	2	2	50
chocolate ice cream (scoop)	200	2	2	4	20
$\underset{\text { (bottle) }}{\substack{\text { cola } \\ \hline}}$	150	0	4	1	30
pineapple cheesecake (piece)	500	0	4	5	80

PROBLEM FORMULATION

\square Objective of the problem is to minimize the total costs of the diet

Decision variables are defined for each day's purchases

$$
\begin{aligned}
& x_{1}=\text { number of brownies } \\
& x_{2}=\text { number of chocolate ice cream scoops } \\
& x_{3}=\text { number of bottles of soda } \\
& x_{4}=\text { number of pineapple cheesecake pieces }
\end{aligned}
$$

PROBLEM FORMULATION

\square The problem statement is

$\min Z=50 x_{1}+20 x_{2}+30 x_{3}+80 x_{4}$
s.t.
$400 x_{1}+200 x_{2}+150 x_{3}+500 x_{4} \geq 500$ cal

$$
\begin{array}{ll}
3 x_{1}+2 x_{2} & \\
2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4} & \geq 10 \mathrm{oz} \\
2 x_{1}+4 x_{2}+x_{3}+5 x_{4} & \geq 8 \mathrm{oz}
\end{array}
$$

$$
x_{i} \geq 0 \quad i=1,4
$$

EXAMPLE 3: DIET PROBLEM

\square The dual problem is

$\max W=500 y_{1}+6 y_{2}+10 y_{3}+8 y_{4}$
sot.
$400 y_{1}+3 y_{2}+2 y_{3}+2 y_{4} \leq 50 \quad$ brownie
$200 y_{1}+2 y_{2}+2 y_{3}+4 y_{4} \leq 20 \quad$ ice cream
$150 y_{1} \quad+4 y_{3}+y_{4} \leq 30 \quad$ soda
$500 y_{1} \quad+4 y_{3}+5 y_{4} \leq 80 \quad$ cheesecake

$$
y_{1}, y_{2}, y_{3}, y_{4} \geq 0
$$

INTERPRETATION OF THE DUAL

\square We consider a salesperson of "nutrients" who is interested in assuming that each dieter meets daily requirements by purchasing calories, sugar, fat and chocolate as "goods"
\square The decision is to determine the prices charged $y_{i}=$ price per unit of required nutrient to sell to dieters
\square Objective of the salesperson is to set the prices y_{i} so as to maximize revenues from selling to the dieter the daily ration of required nutrients

INTERPRETATION OF DUAL

Now, the dieter can purchase a brownie for 50ϕ and have $400 \mathrm{cal}, 3 \mathrm{oz}$ of chocolate, 2 oz of sugar and 2 oz of fat
\square The sales price y_{i} must be set sufficiently low to entice the buyer to get the required nutrients from the brownie:

$$
400 y_{1}+3 y_{2}+2 y_{3}+2 y_{4} \leq 50 \longleftarrow \underset{\text { constraint }}{\text { brownie }}
$$

\square We derive similar constraints for the ice cream, the soda and the cheesecake

DUAL PROBLEMS

$\max \quad Z=\underline{\boldsymbol{c}}^{T} \underline{\boldsymbol{x}}$
sot.

$$
\begin{aligned}
\underline{A} \underline{x} & \leq \underline{b} \\
\underline{x} & \geq \underline{0}
\end{aligned}
$$

min

$$
\boldsymbol{W}=\underline{b}^{T} \underline{y}
$$

sot.

$$
\begin{aligned}
\underline{A}^{T} \underline{y} & \geq \underline{c} \\
\underline{y} & \geq \underline{0}
\end{aligned}
$$

WEAK DUALITY THEOREM

\square For any \underline{x} feasible for (P) and any \underline{y} feasible for (D), the following relation is satisfied

$$
\underline{c}^{T} \underline{x} \leq \underline{b}^{T} \underline{y}
$$

\square Proof:

$$
\begin{gathered}
\underline{A}^{T} \underline{y} \geq \underline{c} \Rightarrow \underline{c}^{T} \leq \underline{y}^{T} \underline{A} \Rightarrow \underline{c}^{T} \underline{x} \leq \underline{y}^{T} \underline{A} \underline{x} \\
\underline{c}^{T} \underline{x} \leq \underline{y}^{T} \underline{A} \underline{x} \leq \underline{y}^{T} \underline{b}=\underline{b}^{T} \underline{y}
\end{gathered}
$$

COROLLARY 1 OF THE WEAK DUALITY THEOREM

\underline{x} is feasible for $(P) \Rightarrow \underline{c}^{T} \underline{x} \leq \underline{y}^{T} \underline{b}$
for any feasible \underline{y} for (D)

$$
\underline{c}^{T} \underline{x} \leq \underline{y}^{* T} \underline{b}=\min W
$$

for any feasible \underline{x} for (P),

$$
\underline{c}^{T} \underline{x} \leq \min W
$$

COROLLARY 2 OF THE WEAK DUALITY THEOREM

\underline{y} is feasible for $(D) \Rightarrow \underline{c}^{T} \underline{x} \leq \underline{y}^{T} \underline{b}$ for every feasible \underline{x} for (P) $\max Z=\max \underline{c}^{T} \underline{x}=\underline{c}^{T} \underline{x}^{*} \leq \underline{y}^{T} \underline{b}$
for any feasible \underline{y} of (D),

$$
\underline{y}^{T} \underline{b} \geq \max Z
$$

ECE 307 © 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COROLLARIES 3 AND 4 OF THE WEAK DUALITY THEOREM

If (P) is feasible and $\max Z$ is unbounded, i.e.,

$$
Z \rightarrow+\infty
$$

then, (D) has no feasible solution.

If (D) is feasible and $\min Z$ is unbounded, i.e.,

$$
Z \rightarrow-\infty,
$$

then, (P) is infeasible.

DUALITY THEOREM APPLICATION

\square Consider the maximization problem

$$
\max Z=x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=\underbrace{[1,2,3,4]}_{\underline{c}^{T}} \underline{x}
$$

s.t.

$$
\underbrace{\left[\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 1 & 3 & 2
\end{array}\right]}_{\underline{A}} \underline{\underline{x}} \leq \underbrace{\left[\begin{array}{c}
20 \\
20
\end{array}\right]}_{\underline{b}}
$$

(P)

DUALITY THEOREM APPLICATION

The corresponding dual is given by

$$
\left.\begin{array}{ll}
\min & \\
\text { s.t. } & \\
& \tag{D}\\
& \underline{A}^{T} \underline{y} \\
& \underline{y} \geq \underline{c} \\
& \underline{y} \geq \underline{0}
\end{array}\right\}
$$

\square With the appropriate substitutions, we obtain

DUALITY THEOREM APPLICATION

min

$$
W=20 y_{1}+20 y_{2}
$$

sot.

$$
\begin{aligned}
& y_{1}+2 y_{2} \geq 1 \\
& 2 y_{1}+y_{2} \geq 2 \\
& 2 y_{1}+3 y_{2} \geq 3 \\
& 3 y_{1}+2 y_{2} \geq 4 \\
& y_{1} \geq 0, y_{2} \geq 0
\end{aligned}
$$

GENERALIZED FORM OF THE DUAL

\square Consider the primal decision

$$
x_{i}=1, \quad i=1,2,3,4 ;
$$

decision is feasible for (P) with

$$
Z=\underline{c}^{T} \underline{x}=10
$$

\square The dual decision

$$
y_{i}=1, \quad i=1,2
$$

is feasible for (D) with

$$
W=\underline{b}^{T} \underline{y}=40
$$

DUALITY THEOREM APPLICATION

\square Clearly,

$$
Z\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=10 \leq 40=W\left(y_{1}, y_{2}\right)
$$

and so clearly, the feasible decision for (P) and (D)
satisfy the Weak Duality Theorem
\square Moreover, we have
corollary $1 \Rightarrow 10 \leq \min W=W\left(y_{1}^{*}, y_{2}^{*}\right)$
corollary $2 \Rightarrow \max Z=Z\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right) \leq \underline{b}^{T} \underline{y}=40$

COROLLARIES 5 AND 6

(P) is feasible and (D) is infeasible, then,
(P) is unbounded
(D) is feasible and (P) is infeasible, then,
(D) is unbounded

EXAMPLE

\square Consider the primal dual problems:

\square Now

$$
\underline{x}=\underline{0} \text { is feasible for }(P)
$$

EXAMPLE

$$
\underline{x}=\underline{0} \text { is feasible for }(P)
$$

but

$$
-y_{1}-2 y_{2} \geq 1
$$

is impossible for (D) since it is inconsistent with

$$
y_{1}, y_{2} \geq 0
$$

\square Since (D) is infeasible, it follows from Corollary 5 that $Z \rightarrow \infty$
\square You are able to show this result by solving (P) using the simplex scheme

OPTIMALITY CRITERION THEOREM

\square We consider the primal-dual problems (P) and (D) with
\underline{x}^{0} is feasible for $(P) \quad \underline{x}^{0}$ is optimal for (P) \underline{y}^{0} is feasible for (D)
$\underline{c}^{T} \underline{x}^{0}=\underline{b}^{T} \underline{y}^{0}$ \Rightarrow and
\underline{y}^{0} is optimal for (D)
We next provide the proof:
\underline{x}^{0} is feasible for (P) Weak Duality \underline{y}^{0} is feasible for $(D) \underset{\text { the rem }}{\Rightarrow} \underline{c}^{T} \underline{x}^{0} \leq \underline{b}^{T} \underline{y}^{0}$

OPTIMALITY CRITERION THEOREM

but we are given that

$$
\underline{c}^{T} \underline{x}^{0}=\underline{b}^{T} \underline{y}^{0}
$$

and so it follows that \forall feasible \underline{x} with \underline{y}^{0} feasible

$$
\underline{c}^{T} \underline{x} \leq \underline{b}^{T} \underline{y}^{0}=\underline{c}^{T} \underline{x}^{0}
$$

and so \underline{x}^{0} is optimal;
similarly, \forall feasible \underline{y} with \underline{x}^{0} feasible

$$
\underline{b}^{T} \underline{y} \geq \underline{c}^{T} \underline{x}^{0}=\underline{b}^{T} \underline{y}^{0}
$$

and so it follows that \underline{y}^{0} is optimal

MAIN DUALITY THEOREM

(P) is feasible and (D) is feasible; then,

$\exists \underline{x}^{*}$ feasible for (P) which is optimal and
$\exists \underline{y}^{*}$ feasible for (D) which is optimal such that

$$
\underline{c}^{T} \underline{x}^{*}=\underline{b}^{T} \underline{y}^{*}
$$

COMPLEMENTARY SLACKNESS CONDITIONS

$\square \underline{x}^{*}$ and \underline{y} * are optimal for (P) and (D) respectively, if and only if

$$
\begin{aligned}
0 & =\left(\underline{y}^{* T} \underline{A}-\underline{c}^{T}\right) \underline{x}^{*}+\underline{y}^{* T}\left(\underline{b}-\underline{A} \underline{x}^{*}\right) \\
& =\underline{y}^{* T} \underline{b}-\underline{c}^{T} \underline{x}^{*}
\end{aligned}
$$

\square We prove this equivalence result by defining the slack variables $\underline{\underline{u}} \in \mathbb{R}^{\boldsymbol{m}}$ and $\underline{\underline{v}} \in \mathbb{R}^{\boldsymbol{n}}$ such that $\underline{\boldsymbol{x}}$ and \underline{y} are feasible; at the optimum,

$$
\begin{array}{ll}
\underline{\boldsymbol{A}}^{*}+\underline{\boldsymbol{u}}^{*}=\underline{\boldsymbol{b}} \quad \underline{\boldsymbol{x}}^{*}, \underline{\boldsymbol{u}}^{*} \geq \underline{\boldsymbol{0}} \\
\boldsymbol{A}^{T} \underline{\boldsymbol{y}}^{*}-\underline{\boldsymbol{v}}^{*}=\underline{\boldsymbol{c}} \quad \underline{\boldsymbol{y}}^{*}, \underline{\boldsymbol{v}}^{*} \geq \mathbf{0}
\end{array}
$$

COMPLEMENTARY SLACKNESS CONDITIONS

where the optimal values of the slack variables
\underline{u}^{*} and \underline{v} * depend on the optimal values
\underline{x}^{*} and \underline{y}^{*}
\square Now,

$$
\begin{aligned}
& \underline{\boldsymbol{y}}^{* T} \underline{\boldsymbol{A}}^{*}+\underline{y}^{* T} \underline{u}^{*}=\underline{y}^{* T} \underline{\boldsymbol{b}}=\underline{b}^{T} \underline{\boldsymbol{y}}^{*} \\
& \underbrace{\boldsymbol{x}^{* T}} \underline{\boldsymbol{A}}^{T} \underline{\underline{y}}^{*}-\underline{x}^{* T} \underline{\boldsymbol{v}}^{*}=\underline{x}^{* T} \underline{\boldsymbol{c}}=\underline{\boldsymbol{c}}^{T} \underline{x}^{*}
\end{aligned} \underline{\underline{x}}^{*} .
$$

COMPLEMENTARY SLACKNESS CONDITIONS

\square This implies that

$$
\underline{y}^{* T} \underline{u}^{*}+\underline{y}^{* T} \underline{x}^{*}=\underline{b}^{T} \underline{y}^{*}-\underline{c}^{T} \underline{x}^{*}
$$

\square We need to prove optimality which is true if and
only if

$$
\underline{y}^{* T} \underline{u}^{*}+\underline{v}^{* T} \underline{x}^{*}=0
$$

COMPLEMENTARY SLACKNESS CONDITIONS

\square However,

$$
\begin{gathered}
\underline{x}^{*}, \underline{y}^{*} \underset{\substack{\text { are optimal } \\
\underline{c}^{T} \\
\underline{x}^{*}=\\
\underline{b}^{T} \\
\underline{y}^{*} \\
\Rightarrow \underline{y}^{* T} \underline{u}^{*}+\underline{v}^{* T} \underline{x}^{*}=0}}{\text { Theorem }}=0
\end{gathered}
$$

\square Also,

$$
\underline{\underline{y}}^{* T} \underline{u}^{*}+\underline{v}^{* T} \underline{x}{ }^{*}=0 \Rightarrow \underline{b}^{T} \underline{y}^{*}=\underline{c}^{T} \underline{x}^{*}
$$

\underline{x}^{*} is optimal for (P) and \underline{y}^{*} is optimal for (D)

COMPLEMENTARY SLACKNESS CONDITIONS

- Note that

$$
\begin{gathered}
\underline{x}^{*}, \underline{y}^{*}, \underline{u}^{*}, \underline{v}^{*}>0 \Rightarrow \text { component }- \text { wise each element } \geq 0 \\
\underline{y}^{* T} \underline{u}^{*}+\underline{v}^{*} \underline{x}^{*}=0 \Rightarrow y_{i}^{*} u *=0 \forall i=1, \ldots, m \\
\text { and } v_{j}^{*} x_{j}^{*}=0 \forall j=1, \ldots, n
\end{gathered}
$$

\square At the optimum,

$$
y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}^{*}\right)=0 \quad i=1, \ldots, m
$$

and

$$
x_{j}^{*}\left(\sum_{i=1}^{m} a_{j i} y_{i}^{*}-c_{j}\right)=0 \quad j=1, \ldots, n
$$

COMPLEMENTARY SLACKNESS CONDITIONS

\square Hence, for $i=1,2, \ldots, m$

$$
y_{i}^{*}>0 \Rightarrow b_{i}=\sum_{j=1}^{n} a_{i j} x_{j}^{*}
$$

and

$$
b_{i}-\sum_{j=1}^{m} a_{i j} x_{i}^{*}>0 \Rightarrow y_{i}^{*}=0
$$

\square Similarly for $j=1,2, \ldots, n$

$$
x_{i}^{*}>0 \Rightarrow \sum_{i=1}^{m} a_{j i} y_{i}^{*}=c_{j}
$$

and

$$
\sum_{i=1}^{m} a_{j i} y_{i}^{*}-c_{j}>0 \Rightarrow x_{j}^{*}=0
$$

EXAMPLE

$\max \quad Z=x_{1}+2 x_{2}+3 x_{3}+4 x_{4}$
s.t.

$$
\left.\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}+3 x_{4} \leq 20 \\
2 x_{1}+x_{2}+3 x_{3}+2 x_{4} \leq 20 \\
x_{i} \geq 0 \quad(P) \\
i=1, \ldots, 4
\end{array}\right\}
$$

EXAMPLE

$\min \quad W=20 y_{1}+20 y_{2}$
s.t.

$$
\left.\begin{array}{rl}
y_{1}+2 y_{2} & \geq 1 \\
2 y_{1}+y_{2} & \geq 2 \\
2 y_{1}+3 y_{2} & \geq 3 \\
3 y_{1}+2 y_{2} & \geq 4 \\
y_{1}, y_{2} & \geq 0
\end{array}\right\}(D)
$$

EXAMPLE

$$
\begin{aligned}
& \underline{x}^{*}, \underline{y}^{*} \text { optimal } \Rightarrow \\
& y_{1}^{*}\left(20-x_{1}^{*}-2 x_{2}^{*}-2 x_{3}^{*}-3 x_{4}^{*}\right)=0 \\
& y_{2}^{*}\left(20-2 x_{1}^{*}-x_{2}^{*}-3 x_{3}^{*}-2 x_{4}^{*}\right)=0 \\
& \underline{y}^{*}=\left[\begin{array}{l}
1.2 \\
0.2
\end{array}\right] \text { is given as an optimal solution with }
\end{aligned}
$$

$$
\min W=28
$$

EXAMPLE

$$
\begin{aligned}
& \boldsymbol{x}_{1}^{*}+2 \boldsymbol{x}_{2}^{*}+2 \boldsymbol{x}_{3}^{*}+\mathbf{3} \boldsymbol{x}_{4}^{*}=\mathbf{2 0} \\
& \mathbf{2} \boldsymbol{x}_{1}^{*}+\boldsymbol{x}_{2}^{*}+\mathbf{3} \boldsymbol{x}_{3}^{*}+\mathbf{2} \boldsymbol{x}_{4}^{*}=\mathbf{2 0}
\end{aligned}
$$

$y_{1}^{*}+2 y_{2}^{*}=1.2+0.4>1 \Rightarrow x_{1}^{*}=0$
$2 y_{1}^{*}+y_{2}^{*}=2.4+0.2>2 \Rightarrow x_{2}^{*}=0$
$2 y_{1}^{*}+3 y_{2}^{*}=2.4+0.6=3$
$3 y_{1}^{*}+2 y_{2}^{*}=3.6+0.4=4$ so that

$$
\left.\begin{array}{ll}
2 x_{3}^{*}+3 x_{4}^{*}=20 & \Rightarrow x_{3}^{*}=4 \\
3 x_{3}^{*}+2 x_{4}^{*}=20 & \Rightarrow x^{*}=4
\end{array}\right\}
$$

COMPLEMENTARY SLACKNESS CONDITION APPLICATIONS

\square Key uses of c.s. conditions are
O finding optimal (P) solution given optimal (D) solution and vice versa

O verification of optimality of solution (whether a feasible solution is optimal)
\square We can start with a feasible solution and attempt to construct an optimal dual solution; if we succeed, then the feasible primal solution is optimal

[^0]
DUALITY

\max
 $$
z=\underline{\underline{c}}^{T} \underline{x}
$$

sot.

$$
\begin{aligned}
\underline{A} \underline{x} & \leq \underline{b} \\
\underline{x} & \geq \underline{0}
\end{aligned}
$$

$\min \quad W=\underline{b}^{T} \underline{y}$
sot.

$$
\begin{aligned}
\underline{A}^{T} \underline{y} & \geq \underline{c} \\
\underline{y} & \geq \underline{0}
\end{aligned}
$$

DUALITY

Suppose the primal problem is minimization, then,

$\min \quad Z=\underline{c}^{T} \underline{x}$
s.t.

$$
\begin{aligned}
\underline{\boldsymbol{A}} \underline{\boldsymbol{x}} & \geq \underline{\boldsymbol{b}} \\
\underline{\boldsymbol{x}} & \geq \underline{\boldsymbol{0}} \\
\boldsymbol{W} & =\underline{\boldsymbol{b}}^{T} \underline{\boldsymbol{y}}
\end{aligned}
$$

max
s.t.

$$
\begin{align*}
\underline{A}^{T} \underline{y} & \leq \underline{c} \tag{D}\\
\underline{y} & \geq \underline{0}
\end{align*}
$$

INTERPRETATION

\square The economic interpretation is
$Z^{*}=\max Z=\underline{c}^{T} \underline{x}^{*}=\underline{b}^{T} \underline{y}^{*}=W^{*}=\min W$
$b_{i}-$ constrained resource quantities
$y_{i}^{*}-$ optimal dual variables
\square Suppose, we change

$$
b_{i} \rightarrow b_{i}+\Delta b_{i} \Rightarrow \Delta Z=y_{i}^{*} \Delta b_{i}
$$

\square In words, the optimal dual variable for each primal constraint gives the net change in the optimal value of the objective function Z for a one unit change in the constraint on resources

INTERPRETATION

\square Economists refer to the dual variable as the shadow price on the constraint resource

The shadow price determines the value/worth of having an additional quantity of a resource
\square In the previous example, the optimal dual variables indicate that the worth of another unit of resource 1 is 1.2 while that of another unit of resource 2 is 0.2

GENERALIZED FORM OF THE DUAL

We start out with

GENERALIZED FORM OF THE DUAL

\square To find (D), we first put (P) in symmetric form

$$
\begin{aligned}
\underline{y}_{+} \leftrightarrow & \underline{A} \underline{x}
\end{aligned} \leq \underline{b}\left[\begin{array}{r}
\underline{A} \\
\underline{y}_{-} \leftrightarrow-\underline{A} \underline{x}
\end{array}\right]-\underline{b}\left[\underline{x} \leq\left[\begin{array}{r}
\underline{b} \\
-\underline{A}
\end{array}\right] \quad \underline{-\underline{b}}\right]
$$

GENERALIZED FORM OF THE DUAL

- Let

$$
\underline{y}=\underline{y}_{+}-\underline{y}_{-}
$$

- We rewrite the problem as

$$
\begin{aligned}
& \min W=\underline{b}^{T} \underline{y} \\
& \text { s.t. } \\
& \qquad \underline{A}^{T} \underline{y} \geq \underline{c} \\
& \underline{y} \text { is unsigned }
\end{aligned}
$$

\square The c.s. conditions apply

$$
\underline{x}^{* T}\left(\underline{A}^{T} \underline{y}^{*}-\underline{c}\right)=\underline{0}
$$

EXAMPLE 5: THE PRIMAL

s.t.

$$
\max Z=x_{1}-x_{2}+x_{3}-x_{4}
$$

$$
\begin{aligned}
& y_{1} \leftrightarrow x_{1}+x_{2}+x_{3}+x_{4}=8 \\
& y_{2} \leftrightarrow x_{1} \quad \leq 8 \\
& y_{3} \leftrightarrow \quad x_{2} \quad \leq 4 \\
& y_{4} \leftrightarrow \quad-x_{2} \quad \leq 4 \\
& y_{5} \leftrightarrow \\
& x_{3} \leq 4 \\
& -x_{3} \leq 2 \\
& x_{4} \leq 10 \\
& x_{1}, x_{4} \geq 0 \\
& x_{2}, x_{3} \text { unsigned } \\
& y_{7} \leftrightarrow
\end{aligned}
$$

EXAMPLE 5: THE DUAL

$$
\min W=8 y_{1}+8 y_{2}+4 y_{3}+4 y_{4}+4 y_{5}+2 y_{6}+10 y_{7}
$$

sot.

$$
\begin{aligned}
& x_{1} \leftrightarrow y_{1}+y_{2} \\
& x_{2} \leftrightarrow y_{1} \quad+y_{3}-y_{4} \\
& x_{3} \leftrightarrow y_{1} \\
& x_{4} \leftrightarrow y_{1} \\
& +y_{7} \geq-1 \\
& y_{2}, \ldots \ldots ., y_{7} \geq 0 \\
& y_{1} \text { unsigned }
\end{aligned}
$$

EXAMPLE 5: c.s. conditions

We are given that

$$
\underline{x}^{*}=\left[\begin{array}{r}
8 \\
-4 \\
4 \\
0
\end{array}\right]
$$

is optimal for (P)
\square Then the c.s. conditions obtain

$$
x_{1}^{*}\left(y_{1}^{*}+y_{2}^{*}-1\right)=0
$$

EXAMPLE 5: c.s.conditions

so that

$$
x_{1}^{*}=8>0 \Rightarrow y_{1}^{*}+y_{2}^{*}=1
$$

and so $y_{2}^{*}=1-y_{1}^{*}$
\square The other c.s. conditions require

$$
y_{i}^{*}\left(\sum_{j=1}^{4} a_{i j} x_{j}^{*}-b_{i}\right)=0
$$

\square Now, $x_{4}^{*}=0$ implies $x_{4}^{*}-10<0$ and so $y_{7}^{*}=0$

EXAMPLE 5: c.s.conditions

\square Also, $x_{3}^{*}=4$ implies

$$
y_{6}^{*}=0
$$

\square We similarly use the c.s. conditions

$$
x_{j}^{*}\left(\sum_{i=1}^{7} a_{j i} y_{i}^{*}-c_{j}\right)=0
$$

to provide implications on the y_{i}^{*} variables

EXAMPLE 5: c.s. conditions

\square Since $x_{2}^{*}=-4$, then we have

$$
y_{3}^{*}=0
$$

\square Now, with $y_{7}^{*}=0$ we have

$$
y_{1}^{*}>-1
$$

\square Now, we have already shown that

$$
y_{2}^{*}=1-y_{1}^{*}
$$

EXAMPLE 5

\square Suppose that

$$
y_{1}^{*}=1
$$

and so,

$$
y_{2}^{*}=0
$$

\square Furthermore,

$$
y_{1}^{*}+y_{3}^{*}-y_{4}^{*}=1-y_{4}^{*}=-1
$$

implies that

$$
y_{4}^{*}=2
$$

EXAMPLE 5

\square Also

$$
y_{1}^{*}+y_{5}^{*}-y_{6}^{*}=1
$$

implies

$$
1+y_{5}^{*}=1
$$

and so

$$
y_{5}^{*}=0
$$

EXAMPLE 5

Therefore, as $W=\underline{b}^{T} \underline{y}$

$$
\begin{aligned}
W\left(\underline{y}^{*}\right)= & (8)(1)+(8)(0)+(4)(0)+(4)(2)+ \\
& (4)(0)+(2)(0)+(10)(0) \\
= & 16
\end{aligned}
$$

and so

$$
W^{*}=16=Z^{*} \Leftrightarrow \text { optimality of }(P) \text { and }(D)
$$

PRIMAL - DUAL TABLE

primal (maximize)	dual (minimize)
\underline{A} (coefficient matrix)	\underline{A}^{T} (transpose of the coefficient matrix)
\underline{b} (right-hand side vector)	\underline{b} (cost vector)
\underline{c} (price vector)	\underline{c} (right hand side vector)
$\boldsymbol{i}^{\text {th }}$ constraint is $=$ type	the dual variable y_{i} is unrestricted in sign
$\boldsymbol{i}^{\text {th }}$ constraint is \leq type	the dual variable $y_{i} \geq 0$
$\boldsymbol{i}^{\text {th }}$ constraint is \geq type	the dual variable $y_{i} \leq 0$
\boldsymbol{x}_{j} is unrestricted	$j^{\text {th }}$ dual constraint is $=$ type
$x_{j} \geq 0$	$j^{\text {th }}$ dual constraint is \geq type
$x_{j} \leq 0$	$j^{\text {th }}$ dual constraint is \leq type

[^0]: ECE 307© 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

