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q We examine the solution of 

using Gauss─Jordan elimination 

q We first use a simple example and then generalize 

to cases of general interest

q Consider the system of two equations in five 

unknowns:

SOLUTION  OF  SYSTEMS  OF  LINEAR 
EQUATIONS

Ax b=
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SOLUTION  OF  SYSTEMS  OF  LINEAR 
EQUATIONS

q For this simple example, the number of 

unknowns exceeds the number of equations and 

so the system has multiple solutions; this is the 

principal reason that the LP solution is nontrivial

S
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q The Gauss―Jordan elimination uses elementary row 

operations:

m multiplication of any equation by a nonzero   

constant

m addition to any equation of a nonzero constant 

multiple of any other equation

SOLUTION  OF  SYSTEMS  OF  LINEAR 
EQUATIONS
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SOLUTION  OF  SYSTEMS  OF  LINEAR 
EQUATIONS

q We transform system       by multiplication of 

equation (i) by ─ 1 and its addition to equation (ii) 

so as to zero out the coefficient of       to obtain1x

  

S 2

x 1 − 2x 2 + x 3 − 4x 4 + 2x 5 = 2

x 2 − 2x 3 + x 4 − 3x 5 = 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪
⎪

S 1
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q A basic variable is a variable  x i that appears with 
the coefficient 1 in an equation and with the 
coefficient 0 in all the other equations

q A variable x j that is not basic is called a nonbasic

variable

q In the system      , x 1 appears as a basic variable;   
x 2 , x 3 , x 4 and x 5 are nonbasic variables

q Basic variables may be generated through the 
use of elementary row operations

DEFINITIONS

2S
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DEFINITIONS

q A pivot operation is the set of sequential elementary 

row operations that reduces a system of linear 

equations into the form in which a specified 

variable becomes a basic variable

q A canonical system is a set of linear equations 

obtained through pivot operations with the property 

that the system has the same number of basic 

variables as the number of equations in the set
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CANONICAL  SYSTEM  FORM
q We transform the system      into the canonical 

form of system      :

q The basic solution is obtained from a canonical 

system with all the nonbasic variables set to 0

q For the example, we set                                and so

  

S 3

x1 − 3x 3 − 2x 4 − 4x 5 = 6

x 2 − 2x 3 + x 4 − 3x 5 = 2

⎧

⎨
⎪⎪

⎩
⎪
⎪

3 4 5x x x 0= = =

1 26 2x x= =and 

2S

3S
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BASIC FEASIBLE SOLUTION

q A basic feasible solution is a basic solution in which  

the value of each basic variable is nonnegative

q In the example of system , we may choose any 

two variables to be basic 

q In general for a system of m equations in n 

unknowns there are possible combinations 

of basic variables
 

n
m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2S
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q As n increases, the number of combinations 

becomes large, even though it remains finite

q For the example, we have

combinations of possible choices

BASIC  FEASIBLE  SOLUTION

5 5! 103! 2!2
æ ö
ç ÷
è ø

= =
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THE  SIMPLEX  SOLUTION  METHOD

q We next use a simple example to construct the 

simplex solution method

q The simplex method is a systematic and efficient scheme

to examine a subset of the basic feasible solutions 

of the LP to hone in on an optimal solution

q We apply the notions introduced in the definitions 

we introduced above
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SIMPLEX  METHODOLOGY  EXAMPLE

   

max Z = 5x 1 + 2x 2 + 3x 3 − x 4 + x 5

s. t .

x 1 + 2x 2 + 2x 3 + x 4 = 8 (*)

3x 1 + 4x 2 + x 3 + x 5 = 7 (**)

x i ≥ 0 i =1, … , 5

ì
ï
ï
í
ï
ïî

canonical 

form
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THE  SIMPLEX  SOLUTION  METHOD

q The canonical form of the example allows the 

determination of a basic feasible solution

q The corresponding value of the objective is

q The next step is to improve the basic feasible solution

and we need to find an adjacent basic feasible solution

1 2 3 4 58, 7x x x x x0= = = = =

8 7 1Z = - + = -



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 14

ADJACENT  FEASIBLE  SOLUTION

q An adjacent basic feasible solution is one which differs 

from the current basic feasible solution in exactly 

one basic variable 

q Note, we characterize a basic feasible solution by the 

following traits

 

basicvariable ≥ 0

nonbasic variable = 0
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ADJACENT  FEASIBLE  SOLUTION

q The search for an adjacent basic feasible solution 

is based on the idea of the switch of a nonbasic

variable into a basic variable by increasing its value 

from 0 to the largest positive value without the  

violation of any constraints

q To make the search efficient, we select the nonbasic

variable that improves the value of Z by the 

largest amount for the maximization objective
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ADJACENT  FEASIBLE  SOLUTION

q In the example, consider the nonbasic variable      

,  we leave                        and examine the 

possibility to convert       into a basic variable

q The variable  enters in both constraints

1x 2 3x x 0= =

x 1 + x 4 = 8

3x 1 + x 5 = 7

1x

1x
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ADJACENT  FEASIBLE  SOLUTION
q The largest value      may assume without making 

either      or       negative is 

q We have the new basic variable with the value

and the other basic variable is

4 5x x

min 7 78,  3 3
ì ü
í ý
î þ

=

1 ,7
3x =

4
17
3x =

1x
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ADJACENT  FEASIBLE  SOLUTION

and the three nonbasic variables are set to 0:

q Note that we obtain an improvement in Z since its 

value becomes

q We next transform the system of equations into 

canonical form:

2 3 5x x x0 0= = =and

7 17 185 6 13 3 3Z •= - = = > -
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SIMPLEX  METHODOLOGY  EXAMPLE

   

max Z = 5x
1
+ 2x

2
+ 3x

3
- x

4
+ x

5

s . t .

x
1
+ 2 x

2
+ 2 x

3
+ x

4
= 8 (*)

3 x
1
+ 4 x

2
+ x

3
+ x

5
= 7 (**)

x
i
≥0 i =1, … , 5

1

non -
canonical
form
for x

ì
ï
ï
í
ï
ïî
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ADJACENT  FEASIBLE  SOLUTION

m multiply equation          by           and add to 

equation

m multiply equation         by       

1
3-

52 3
2 5 1 17
3 3 3 3x x x+ + - =

1
3

52 3
4 1 1 7
3 3 3 3x x x++ + =

x44x

1x

( )**

( )*

( )**
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q We continue this process until the condition of 

optimality is satisfied:

m in a maximization problem, a basic feasible 

solution is optimal if and only if the relative 

profits of each nonbasic variable is

m in a minimization problem, a basic feasible 

solution is optimal if and only if the relative 

costs of each nonbasic variable is  

THE  SIMPLEX  SOLUTION  METHOD

0£

0³
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q The relative profits (costs) are given by the change in 

Z corresponding to a unit change in a nonbasic

variable

q We use this fact to select the next nonbasic variable

to enter the basis

THE  SIMPLEX  SOLUTION  METHOD
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SIMPLEX  ALGORITHM  FOR  
MAXIMIZATION

Step 1:    start with an initial basic feasible solution with  

all constraint equations in canonical form

Step 2:    check for optimality condition: if the 

relative profits are         for each nonbasic

variable, then the basic feasible solution is

optimal and stop; else, go to Step 3

0£



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 24

SIMPLEX  ALGORITHM  FOR  
MAXIMIZATION

Step 3:    select a nonbasic variable to become the new 

basic variable; check the limits on the 

nonbasic variable – the limiting constraint 

determines which basic variable is replaced       

by the selected nonbasic variable

Step 4:    construct the canonical form for the new 

set of basic variables through elementary  row 

operations; evaluate the basic feasible solution

and Z and return to Step 2



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 25

THE  SIMPLEX  TABLEAU

q We use an efficient way to visually represent the 

steps in the simplex method through a sequence 

of so–called tableaus

q We illustrate the tableau for the simple example 

for the initial basic feasible solution
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THE  SIMPLEX  TABLEAU

cB

cj 5 2 3 – 1 1

x 1 x 2 x 3 x 4 x 5

– 1 1 2 2 1 8

1 3 4 1 1 7

coefficient of x j in Zcoefficients of the 
basic variables in Z

basic 
variables

constraint
constants

5x

4x
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q The optimality check requires the evaluation of

q For each nonbasic variable x j , for our example, we 
have

  

!c j = c j − c B
T •

column corresponding
to x j in canonical form

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

!c 1 = 5 − − 1, 1⎡⎣ ⎤⎦ •
1
3
⎡

⎣
⎢

⎤

⎦
⎥ = 3

!c 2 = 2 − − 1, 1⎡⎣ ⎤⎦ •
2
4
⎡

⎣
⎢

⎤

⎦
⎥ = 0

!c 3 = 3 − − 1, 1⎡⎣ ⎤⎦ •
2
1
⎡

⎣
⎢

⎤

⎦
⎥ = 4

THE  SIMPLEX  TABLEAU
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THE  SIMPLEX  TABLEAU

q We interpret each       as the change in  Z  in 
response to a unit increase in  x j

2 3 – 1 1 constraint

constants

– 1 1 2 2 1 8

1 3 4 1 1 7

3 0 4 0 0  !c
T

5

x 1 x 2 x 3 x 4 x 5

x 4

x 5

Z =  – 1  

c j
c B basic 

variables

  
!c j
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SIMPLEX  TABLEAU

q Note that the optimality test indicates that 

and so the initial basic feasible solution is not optimal

q Since              , we pick  x3 as the nonbasic variable

to enter as a basic variable

q We examine the limiting solution for  x3 in the two 

constraint equations:

    
!c1 = 3 > 0 and !c 3 = 4 > 0

   !c3 > !c1
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THE  SIMPLEX  TABLEAU

and so the limiting value is 

min { 4, 7 } = 4

q We replace the basic variable  x 4 by x 3

equation
limiting basic 

variable
upper limit on x3

1 x 4 (8/2)  =  4

2 x 5 (7/1)  =  7 

{4 ,7 } 4min =



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 31

SIMPLEX  METHODOLOGY  EXAMPLE

    

max Z = 5x
1
+ 2x

2
+ 3x

3
- x

4
+ x

5

s . t .

x
1
+ 2 x

2
+ 2 x

3
+ x

4
= 8 (* )

3 x
1
+ 4 x

2
+ x

3
+ x

5
= 7 (** )

x
i
≥0 i =1, … , 5

4 5

canonical
form
in
andx x

ì
ï
ï
í
ï
ïî
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THE  SIMPLEX  TABLEAU
q For the new basic feasible solution, we put the 

equations into canonical form by

¦ multiplication of  by      to obtain 

¦ subtraction of  from         to obtain 

q The adjacent basic feasible solution is

  
x1 = x2 = x4 = 0 x3 =4, x5 =3

1
2

21 4

1 2 4

3

5

1 1 42 2
5 13 32 2

xx x

x x x

x

x

+ + + =

+ - + =

*

**

( †)

( †)

( †)*( )*

( †)* ( )** ( †)**
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THE  SIMPLEX  TABLEAU

cB

cj 5 2 3 – 1 1

x1 x2 x3 x4 x5

3 x3 1/2 1 1 1/2 4

1 x5 5/2 3 –1/2 1 3

1 – 4 0 – 2 0

   x3 = 4, x5 =3
! "## $##

constraint
constants

  !c
T

basic               
variables

Z =  15
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THE  SIMPLEX  TABLEAU

q Since      > 0 , the basic feasible solution is non-

optimal 

q We examine how to bring  x 1 into the basis

equation
limiting basic 

variable
upper limit on

x 1

x 3 4/(1/2)  =  8

x 5 3/(5/2)  =  6/5 

   
!c1

( †)*

( †)**
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q The variable  x 1 enters the basis with the value 

and  x 5 is replaced as a basic variable by x 1
q We need to put the equations

into canonical form for the basic variables x 3 and x 1

THE  SIMPLEX  TABLEAU

x x x x

x x x x

1 2 3 4

51 2 4

1 1 4 ( †)2 2
5 13 3 ( †)2 2

+ + + =

+ - + =

*

**

6 68,
5 5

minì ü =í ý
î þ
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THE  SIMPLEX  TABLEAU

q The following elementary row operations are used

m multiply by – 1/5 and add to 

m multiply by 2/5

and construct the corresponding tableau

  

2
5

x 2 + x 3 + 3
5

x 4 − 1
5

x 5 = 17
5

1 2 4 5
6 1 2 6
5 5 5 5
x xx x+ - + =

( †)**

( †)**

( †)*
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THE  SIMPLEX  TABLEAU

cB

cj 5 2 3 – 1 1 constraint

constantsx1 x2 x3 x4 x5

3 x3 2/5 1 3/5 – 1/5 17/5

5 x1 1 6/5 – 1/5 2/5 6/5

0 – 26/5 0 – 9/5 – 2/5 Z =  81/5  !c
T

  16.2 > 15
! "# $#

  
!c j ≤ 0 implies optimality

basic 
variables
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SIMPLEX  TABLEAU  EXAMPLE

1 2

1 2

1 2

1 2

1 2

3 2

. . 2 4

3 2 14

3

max Z x x

s t x x

x x

x x

x 0 x 0

= +

- + £

+ £

- £

³ ³
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SIMPLEX  TABLEAU  EXAMPLE

q We put this problem into standard form:

q are fictitious – or slack – variables
   

max Z = 3 x 1 + 2 x 2

s.t .

−x1 + 2 x 2 + x 3 = 4

3 x1 + 2 x 2 + x 4 = 14

x1 − x 2 + x 5 = 3

x 1, … , x 5 ≥ 0

canonical form

ü
ï
ïï
ý
ï
ï
ïþ

53 4, ,x x x
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SIMPLEX  TABLEAU  EXAMPLE

cB

cj 3 2 0 0 0 constraint

constantsx 1 x 2 x 3 x 4 x 5

0 x3 – 1 2 1 4

0 x4 3 2 1 14

0 x5 1 – 1 1 3

3 2 0 0 0 Z  =  0  !c
T

   
!c j =  c j − c B

T • column corresponding to x j( )

basic 
variables



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 41

SIMPLEX  TABLEAU  EXAMPLE

q The data in       indicate that the highest relative 
profits correspond to  x 1 and so  we wish to make  
x 1 a basic variable

q To bring  x 1  into the basis requires to evaluate  

and so  x 1 replaces  x 5 with the value 3
q We evaluate the basic variable at the adjacent 

basic feasible solution and convert into canonical 
form; the new tableau becomes

  !c
T

14, , 3 33min ì ü
í ý
î þ
¥ =
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SIMPLEX  TABLEAU  EXAMPLE

cB

cj 3 2 0 0 0 constraint

constantsx 1 x 2 x 3 x 4 x 5

0 x 3 1 1 1 7

0 x 4 5 1 – 3 5

3 x 1 1 – 1 1 3

0 5 0 0 – 3 Z =  9  !c
T

basic 
variables
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q We reproduce here the calculation of the        

components 

for each nonbasic variable xj

q Note that, by definition,             for each basic 

variable xi

SIMPLEX  TABLEAU  EXAMPLE

  !c
T

  
!c j = c j − c B

T • column corresponding to x j( )

  
!c i = 0
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SIMPLEX  TABLEAU  EXAMPLE

    

!c 1 = 0 by definition since x 1 is  in the basis

!c 2 = 2 − 0 0 3⎡⎣ ⎤⎦

1
5

− 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 5

!c 3 = 0 by definition since x 3 is  in the basis

!c 4 = 0  by definition since x 4 is  in the basis

!c 5 = 0 − 0 0 3⎡⎣ ⎤⎦

1
− 3

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − 3

q The calculations give

indicates possible 
improvement
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q Clearly, the only choice is to get  x 2 into the basis 

and so we need to establish the limiting condition 

from the three equations by evaluating

and so  x 2 replaces x 4 , which becomes a 

nonbasic variable

q We need to rewrite the equations into canonical 

form for  x 3 and  x 2 and construct the new tableau

SIMPLEX TABLEAU EXAMPLE

{ }7, 1, 1min ¥ =
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SIMPLEX  TABLEAU  EXAMPLE

cB

c j 3 2 0 0 0 constraint

constantsx 1 x 2 x 3 x 4 x 5

0 x 3 1 –1/5 8/5 6

2 x 2 1 1/5 –3/5 1

3 x 1 1 1/5 2/5 4

0 0 0 – 1 0 Z =  14  !c
T

  
!c j ≤ 0 ∀ j ⇒ optimum 
! "#### $####

basic 
variables
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q An optimum is at the solution of

x x

x x

x

x

x

xx

3

2

1

54

54

54

1 8
5 5

1 2
5 5

1 2
5 5

6

1

4

- + =

+ - =

+ + =

SIMPLEX  TABLEAU  EXAMPLE

ü
ï
ý
ï
þ

ca
no

ni
ca

l f
or

m
in

x 1
,x

2 
an

d
x 3
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SIMPLEX  TABLEAU  EXAMPLE

q This optimum is given by

x x

x

x

x

4 5

3

2

1

0

6

1

4

= =

=

=

=
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LINEAR  PROGRAMMING  EXAMPLE

q Consider the following LP

q The graphical representation corresponds to

1

1 2

1 2

1 2

1 2

23 2

. .
2 4

3 2 14

3

x

0, 0

max Z x

s t
x x

x x

x x

x x

-

³ ³

= +

+ £

+ £

- £
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LINEAR  PROGRAMMING  EXAMPLE

1 32

1

2

3

A

E

D

C

B

- x 1
+  2x 2

=  4

- x
1

- x
2

= 
 3

3x
1 +  2x

2
=  Z

= 9

3x
1 +  2x

2
=  Z

= 3

x 1

x 2

tableau 1

tableau 2

tableau 3
3x

1 +  2x
2 = 14 
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q The tableau approach leads to  C which is an 
optimal solution with 

q Note that any point along  CD has  Z = 14 and as 
such D is another optimal solution corresponding 
to an adjacent basic feasible solution

q We may obtain D from  C by bringing into the 
basis the nonbasic variable  in Tableau 3; note 
that

LINEAR  PROGRAMMING  EXAMPLE

1 2 3 4 54, 1, 6,x x x x 0, x 0 = = = = =

   
!c 5 = 0

5x
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q We may choose  x5 as a basic variable without 

affecting  Z since its relative profits are 0 ; we 

compute the limiting value of  x5 

q The limit is imposed by  x3  which, consequently, 

leaves the basis

q The corresponding tableau is:

LINEAR  PROGRAMMING  EXAMPLE
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cB

c j 3 2 0 0 0 constraint

constantsx 1 x 2 x 3 x 4 x 5

0 x 3 5/8 –1/8 1 15/4

2 x 2 1 3/8 1/8 13/4

3 x 1 1 –1/4 1/4 5/2

0 0 0 – 1 0 Z =  14  !c
T

  
!c j ≤ 0 ∀ j 

! "##### $#####

basic 
variables

LINEAR  PROGRAMMING  EXAMPLE
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q The adjacent feasible solution is given by

q Note that at this basic feasible solution,

and so this is also an optimal solution

LINEAR  PROGRAMMING  EXAMPLE

1 2 3 4 5
5 13 15, ,
2 4 4

x x x x 0 , x  = = = = =

  
!c j ≤ 0 ∀ j
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In general, an alternate optimal solution is indicated 

whenever there exists a nonbasic variable

in an optimal tableau; such a situation indicates a 

non unique optimum for the LP 

ALTERNATE  OPTIMAL  SOLUTION

   x j with !c j = 0
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q Consider a minimization LP with the form given 

by

MINIMIZATION  LP

n

i i
i

cmin Z x

s t

Ax b

x 0

1

. .

=
=

=

³

å
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MINIMIZATION  LP

q We replace the optimality check in the simplex   

scheme by the minimization optimality check:

if each coefficient               stop; else, select the 

nonbasic variable with the most negative–valued

component to become the new basic variable

  !c

  
!c j ≥ 0 ,



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 58

q Every minimization LP may be solved as a 

maximization LP because of equivalence

with the solutions of      and  related by

MINIMIZATION  LP

.
(

. ..
)T Tmin Z maxc x

s t
A x b

Z c x
s t

A x b
x 0 x 0

=

=

=

³

¢ -

=

³

 min Z{ } = − max ′Z{ }
Z ¢Z
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q Two variables  xj and  xk are tied in the selection 

of the nonbasic variable to replace a current basic 

variable when              ; the choice of the new 

nonbasic variable to enter the basis is arbitrary

q Two or more constraints may give rise to the 

same minimum ratio value in selecting the basic 

variable to be replaced

q We consider the example of the following tableau

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY

  
!c j = !c k
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cB

c j 0 0 0 2 0 3/2 constraint

constantsx1 x2 x3 x4 x5 x6

0 x1 1 1 – 1 0 2

0 x2 1 2 0 1 4

0 x3 1 1 1 1 3

0 0 0 0 3/2 Z =  0

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY

  !c
T

candidate for basic variable

2

basic  
variables
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m in selecting the nonbasic variable x4 to enter the 

basis, we observe that the first two constraints 

give the same minimum ratio: this means that 

when  x4 is first increased to 2 , both the basic 

variables x1 and x2 will reduce to 0 even though 

only one of them can become a nonbasic variable

m we arbitrarily select to remove x1 from the basis 

to get the new basic feasible solution:

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY
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c B

c j 0 0 0 2 0 3/2 constraint

constantsx1 x2 x3 x4 x5 x6

2 x4 1 1 – 1 2

0 x2 – 2 1 2 1 0

0 x3 – 1 1 1 1 1

– 2 0 0 0 0 3/2 Z = 4

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY

  !c
T

basic  
variables
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m in the new basic feasible solution

we treat  x2 as a basic variable whose value is 0;  

in effect, x2 acts as if it were a nonbasic variable

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY

   x 1 = 0, x 2 = 0, x 3 = 1, x 4 = 2, x 5 = 0, and x 6 = 0 ;
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q A degenerate basic feasible solution is one which has 

one or more basic variables with the value 0

q Degeneracy may lead to a number of complica-

tions in the simplex approach: an important 

implication is a minimum ratio of 0 , so that no 

new nonbasic variable may be included in the basis 

and therefore the basis remains unchanged 

q We consider the following example tableau

DEGENERACY
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c j 0 0 0 2 0 3/2 constraint

constantsx 1 x 2 x 3 x 4 x 5 x 6

2 x 4 1/2 1 1/2 2

0 x 5 – 1 1/2 1 1/2 0

0 x 3 1 – 1 1 0 1

0 – 1 0 0 0 1/2 Z = 4

COMPLICATIONS  IN  THE  SIMPLEX 
METHODOLOGY

  !c
T

basic  
variables

 c B
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the logical choice being the nonbasic variable x6 to 

enter the basis; this leads to finding the limiting 

constraint from two equations

and no constraint in the third equation; thus

DEGENERACY

  

1
2

x 6 = 2 − x 4

1
2

x 6 = 0 − x 5

{ }6 4, ,x min 0 ¥=
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q Degeneracy may result in the construction of new 
tableaus without improvement in the objective 
function value, thereby reducing the efficiency of 
the computational scheme: in effect, an infinite 
loop – the so–called cycling – is possible

q Whenever a tie occurs in the minimum ratio rule, 
an arbitrary decision is made regarding which basic 

variable is replaced, and we ignore the undesirable 
implications of degeneracy and cycling

DEGENERACY



ECE 307 © 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 68

q The minimum ratio rule may not be able to deter–

mine the basic variable to be replaced: this is the 

case when all equations lead to      as the limit 

q Consider the example and corresponding tableau

MINIMUM  RATIO  RULE  
COMPLICATIONS

¥

i

max Z x x

x
x

s t
x x
x x

x 0, i =

3

1 2

1 2

1 2 4

2 3
. .

2
3 4

1, ... ,4

= +

- + =
- + + =

³
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c B

c j 2 3 0 0 constraint

constantsx1 x2 x3 x4

0 x3 1 – 1 1 2

0 x4 – 3 1 1 4

2 3 0 0 Z =  0

MINIMUM  RATIO  RULE  
COMPLICATIONS

  !c
T

q The nonbasic variable x 2 enters the basis to replace  

x 4 and the new tableau is

basic
variables
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c B

c j 2 3 0 0 constraint

constantsx1 x2 x3 x4

0 x3 – 2 1 1 6

3 x2 – 3 1 1 4

11 0 0 – 3 Z =  12

MINIMUM  RATIO  RULE  
COMPLICATIONS

  !c
T

q We select  x 1 to enter the basis but we are unable 

to get limiting constraints from the two equations

basic  
variables
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q In fact, as  x1 increases so do  x2 and  x3 and  Z  

and therefore, the solution is unbounded

q The failure of the minimum ratio rule to result in a 

bound at any simplex tableau implies that the 

problem has an unbounded solution

MINIMUM  RATIO  RULE 
COMPLICATIONS

1 3 1 3

1 2 1 2

12 6 32
1 43 4 3 3

x x x x

x x x x

- + = = -

- + = = -


