### ECE 307 – Techniques for Engineering Decisions

3. Introduction to the Simplex Algorithm

**George Gross** 

### Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

□ We examine the solution of

 $\underline{A}\underline{x} = \underline{b}$ 

using Gauss-Jordan elimination

□ We first use a simple example and then generalize

to cases of general interest

□ Consider the system of two equations in five

#### unknowns:

$$S_{1} \begin{cases} x_{1} - 2x_{2} + x_{3} - 4x_{4} + 2x_{5} = 2 & (i) \\ x_{1} - x_{2} - x_{3} - 3x_{4} - x_{5} = 4 & (ii) \end{cases}$$

#### □ For this simple example, the number of

#### unknowns exceeds the number of equations and

#### so the system has multiple solutions; this is the

#### principal reason that the *LP* solution is *nontrivial*

□ The Gauss—Jordan elimination uses *elementary row* 

operations:

O multiplication of any equation by a nonzero

constant

**O** addition to any equation of a nonzero constant

### multiple of any other equation

 $\Box$  We transform system  $S_1$  by multiplication of

equation (i) by -1 and its addition to equation (ii)

so as to zero out the coefficient of  $x_1$  to obtain

1

$$S_{2} \begin{cases} x_{1} - 2x_{2} + x_{3} - 4x_{4} + 2x_{5} = 2 \\ x_{2} - 2x_{3} + x_{4} - 3x_{5} = 2 \end{cases}$$

# DEFINITIONS

- A *basic variable* is a variable x<sub>i</sub> that appears with the coefficient 1 in an equation and with the coefficient 0 in all the other equations
- **A variable**  $x_j$  that is *not* basic is called a *nonbasic variable*
- □ In the system  $S_2$ ,  $x_1$  appears as a *basic* variable;  $x_2$ ,  $x_3$ ,  $x_4$  and  $x_5$  are *nonbasic* variables
- □ Basic variables may be generated through the
  - use of *elementary row operations*

## DEFINITIONS

□ A *pivot operation* is the set of sequential elementary row operations that reduces a system of linear equations into the form in which a specified variable becomes a *basic variable* □ A *canonical system* is a set of linear equations obtained through *pivot operations* with the property that the system has the same number of *basic variables* as the number of equations in the set

 $\Box$  We transform the system  $S_2$  into the canonical

form of system  $S_3$ :  $\begin{cases}
x_1 & -3x_3 - 2x_4 - 4x_5 = 6 \\
x_2 - 2x_3 + x_4 - 3x_5 = 2
\end{cases}$ 

The *basic solution* is obtained from a canonical system with all the nonbasic variables set to 0

□ For the example, we set  $x_3 = x_4 = x_5 = \theta$  and so  $x_1 = 6$  and  $x_2 = 2$ 

## **BASIC FEASIBLE SOLUTION**

- □ A *basic feasible solution* is a basic solution in which
  - the value of each *basic variable* is nonnegative
- $\Box$  In the example of system S<sub>2</sub>, we may choose any
  - two variables to be basic
- □ In general for a system of *m* equations in *n*

unknowns there are  $\begin{pmatrix} n \\ m \end{pmatrix}$  possible combinations

#### of basic variables

## **BASIC FEASIBLE SOLUTION**

□ As *n* increases, the number of combinations

### becomes large, even though it remains finite

□ For the example, we have

$$\binom{5}{2} = \frac{5!}{3! \, 2!} = 10$$

#### combinations of possible choices

# THE SIMPLEX SOLUTION METHOD

- □ We next use a simple example to construct the
  - *simplex* solution method
- □ The *simplex method* is a *systematic and efficient scheme* 
  - to examine a *subset* of the basic feasible solutions
  - of the LP to hone in on an optimal solution
- We apply the notions introduced in the definitions

#### we introduced above

### SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_{1} + 2x_{2} + 3x_{3} - x_{4} + x_{5}$$
s.t.
$$canonical \begin{cases} x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*) \\ 3x_{1} + 4x_{2} + x_{3} + x_{5} = 7 \quad (**) \\ x_{i} \ge 0 \qquad i = 1, \dots, 5 \end{cases}$$

# THE SIMPLEX SOLUTION METHOD

□ The *canonical form* of the example allows the

determination of a basic feasible solution

$$x_1 = x_2 = x_3 = 0$$
  $x_4 = 8, x_5 = 7$ 

□ The corresponding value of the objective is

$$Z = -8 + 7 = -1$$

□ The next step is to improve the *basic feasible solution* 

#### and we need to find an *adjacent basic feasible solution*

□ An *adjacent basic feasible solution* is one which differs

from the current basic feasible solution in *exactly* 

one basic variable

Note, we characterize a *basic feasible solution* by the following traits

basic variable  $\geq 0$ 

nonbasic variable = 0

The search for an adjacent basic feasible solution

is based on the idea of the switch of a *nonbasic* 

variable into a *basic* variable by increasing its value

from  $\theta$  to the largest positive value without the

violation of any constraints

□ To make the search efficient, we select *the nonbasic* 

variable that improves the value of Z by the

### largest amount for the maximization objective

□ In the example, consider the *nonbasic* variable

 $x_1$ , we leave  $x_2 = x_3 = \theta$  and examine the

possibility to convert  $x_1$  into a basic variable

 $\Box$  The variable  $x_1$  enters in both constraints

$$x_1 + x_4 = 8$$

$$3x_1 + x_5 = 7$$

□ The largest value  $x_1$  may assume without making either  $x_4$  or  $x_5$  negative is

$$min\left\{8, \frac{7}{3}\right\} = \frac{7}{3}$$

□ We have the new *basic* variable with the value

$$x_1 = \frac{7}{3} \quad ,$$

and the other *basic* variable is

$$x_4 = \frac{17}{3}$$

and the three *nonbasic* variables are set to  $\theta$ :

$$x_{2} = x_{3} = 0$$
 and  $x_{5} = 0$ 

 $\Box$  Note that we obtain an improvement in Z since its

value becomes

$$Z = 5 \cdot \frac{7}{3} - \frac{17}{3} = \frac{18}{3} = 6 > -1$$

□ We next transform the system of equations into

canonical form:

## SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_{1} + 2x_{2} + 3x_{3} - x_{4} + x_{5}$$
s.t.
$$non - \begin{cases} x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*) \\ x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*) \\ 3x_{1} + 4x_{2} + x_{3} + x_{5} = 7 \quad (**) \end{cases}$$

$$x_{i} \ge 0 \qquad i = 1, \dots, 5$$

O multiply equation (\*\*) by  $-\frac{1}{3}$  and add to

equation (\*)

$$\frac{2}{3}x_2 + \frac{5}{3}x_3 + x_4 - \frac{1}{3}x_5 = \frac{17}{3}$$
  
multiply equation (\*\*) by  $\frac{1}{3}$   
 $x_1 + \frac{4}{3}x_2 + \frac{1}{3}x_3 + \frac{1}{3}x_5 = \frac{7}{3}$ 

# THE SIMPLEX SOLUTION METHOD

- □ We continue this process until the *condition of* 
  - *optimality* is satisfied:
    - in a maximization problem, a *basic feasible solution* is *optimal* if and only if the relative profits of each *nonbasic variable* is  $\leq 0$
    - in a minimization problem, a basic feasible solution is optimal if and only if the relative costs of each *nonbasic variable* is  $\ge 0$

# THE SIMPLEX SOLUTION METHOD

□ The *relative profits* (*costs*) are given by the change in

#### Z corresponding to a unit change in a *nonbasic*

variable

#### □ We use this fact to select the next *nonbasic variable*

#### to enter the basis

### SIMPLEX ALGORITHM FOR MAXIMIZATION

Step 1: start with an *initial basic feasible solution* with

all constraint equations in *canonical form* 

**Step 2:** check for optimality condition: if the

relative profits are  $\leq \theta$  for each *nonbasic* 

variable, then the basic feasible solution is

### optimal and *stop*; else, go to Step 3

## SIMPLEX ALGORITHM FOR MAXIMIZATION

select a *nonbasic variable* to become the new Step 3: *basic variable*; check the limits on the *nonbasic variable* – the limiting constraint determines which *basic variable* is replaced by the selected *nonbasic variable* construct the *canonical form* for the new Step 4: set of basic variables through *elementary* row operations; evaluate the basic feasible solution and Z and return to Step 2

□ We use an efficient way to visually represent the

steps in the simplex method through a sequence

of so-called *tableaus* 

□ We illustrate the tableau for the simple example

### for the initial basic feasible solution

|                     | coefficients of the<br>basic variables in Z |                       |                       |                       |                       |                       | f x <sub>j</sub> in Z |
|---------------------|---------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                     | Cj                                          | 5                     | 2                     | 3                     | - 1                   | 1                     | constraint            |
| $\underline{C}_{B}$ | basic<br>variables                          | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | constants             |
| - 1                 | <i>x</i> <sub>4</sub>                       | 1                     | 2                     | 2                     | 1                     |                       | 8                     |
| 1                   | <i>x</i> <sub>5</sub>                       | 3                     | 4                     | 1                     |                       | 1                     | 7                     |

□ The optimality check requires the evaluation of

 $\tilde{c}_{j} = c_{j} - \begin{pmatrix} c_{B}^{T} & column \ corresponding \\ to \ x_{j} \ in \ canonical \ form \end{pmatrix}$   $\Box \text{ For each nonbasic variable } x_{j}, \text{ for our example, we have}$ 

$$\tilde{c}_{1} = 5 - [-1,1] \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 3$$
  
$$\tilde{c}_{2} = 2 - [-1,1] \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 0$$
  
$$\tilde{c}_{3} = 3 - [-1,1] \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 4$$

□ We interpret each  $\tilde{c}_j$  as the change in *Z* in response to a unit increase in  $x_j$ 

| <u><u> </u></u> |                              | 5     | 2                     | 3                     | -1                    | 1                     | constraint |
|-----------------|------------------------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
|                 | basic<br>variables           | $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | constants  |
| - 1             | <i>x</i> <sub>4</sub>        | 1     | 2                     | 2                     | 1                     |                       | 8          |
| 1               | <i>x</i> <sub>5</sub>        | 3     | 4                     | 1                     |                       | 1                     | 7          |
|                 | <u><b>č</b></u> <sup>T</sup> | 3     | 0                     | 4                     | 0                     | 0                     | Z = -1     |

## SIMPLEX TABLEAU

□ Note that the optimality test indicates that

$$\tilde{c}_1 = 3 > \theta$$
 and  $\tilde{c}_3 = 4 > \theta$ 

and so the *initial basic feasible solution* is not *optimal* 

 $\Box$  Since  $\tilde{c}_3 > \tilde{c}_1$ , we pick  $x_3$  as the *nonbasic variable* 

to enter as a *basic variable* 

 $\Box$  We examine the limiting solution for  $x_3$  in the two

#### constraint equations:

| equation | limiting basic<br>variable | upper limit on x <sub>3</sub> |  |  |
|----------|----------------------------|-------------------------------|--|--|
| 1        | <i>x</i> <sub>4</sub>      | (8/2) = 4                     |  |  |
| 2        | <i>x</i> <sub>5</sub>      | (7/1) = 7                     |  |  |

#### and so the limiting value is

*min* 
$$\{4,7\} = 4$$

### $\Box$ We replace the basic variable $x_4$ by $x_3$

### SIMPLEX METHODOLOGY EXAMPLE

$$max \ Z = 5x_{1} + 2x_{2} + 3x_{3} - x_{4} + x_{5}$$
s.t.
$$s.t.$$

$$canonical form 
in 
x_{4} and x_{5}$$

$$\begin{cases} x_{1} + 2x_{2} + 2x_{3} + x_{4} = 8 \quad (*) \\ 3x_{1} + 4x_{2} + x_{3} + x_{5} = 7 \quad (**) \\ x_{i} \ge 0 \quad i = 1, \dots, 5 \end{cases}$$

- □ For the new basic feasible solution, we put the equations into canonical form by
  - O multiplication of (\*) by  $\frac{1}{2}$  to obtain (\*†)
  - O subtraction of  $(*\dagger)$  from (\*\*) to obtain  $(**\dagger)$ 
    - $\frac{1}{2}x_1 + x_2 + x_3 + \frac{1}{2}x_4 = 4 \quad (*\dagger)$  $\frac{5}{2}x_1 + 3x_2 - \frac{1}{2}x_4 + x_5 = 3 \quad (**\dagger)$

The adjacent basic feasible solution is

$$x_1 = x_2 = x_4 = 0$$
  $x_3 = 4, x_5 = 3$ 



- □ Since  $\tilde{c}_1 > \theta$ , the basic feasible solution is non-optimal
- $\Box$  We examine how to bring  $x_1$  into the basis

| equation | limiting basic<br>variable | upper limit on<br>x <sub>1</sub> |  |  |
|----------|----------------------------|----------------------------------|--|--|
| (**)     | <i>x</i> <sub>3</sub>      | 4/(1/2) = 8                      |  |  |
| (***)    | <i>x</i> <sub>5</sub>      | 3/(5/2) = 6/5                    |  |  |

 $\Box$  The variable  $x_1$  enters the basis with the value

$$min\left\{8,\ \frac{6}{5}\right\}=\frac{6}{5}$$

and  $x_5$  is replaced as a basic variable by  $x_1$ 

□ We need to put the equations

$$\frac{1}{2}x_1 + x_2 + x_3 + \frac{1}{2}x_4 = 4 \quad (*\dagger)$$
  
$$\frac{5}{2}x_1 + 3x_2 - \frac{1}{2}x_4 + x_5 = 3 \quad (**\dagger)$$

### into canonical form for the basic variables $x_3$ and $x_1$

□ The following elementary row operations are used

O multiply (\* \*  $\dagger$ ) by – 1/5 and add to (\*  $\dagger$ )

$$\frac{2}{5}x_{2} + x_{3} + \frac{3}{5}x_{4} - \frac{1}{5}x_{5} = \frac{17}{5}$$
  
O multiply (\*\*†) by 2/5  
$$x_{1} + \frac{6}{5}x_{2} - \frac{1}{5}x_{4} + \frac{2}{5}x_{5} = \frac{6}{5}$$

#### and construct the corresponding tableau

# THE SIMPLEX TABLEAU



 $\tilde{c}_j \leq 0$  implies optimality





□ We put this problem into standard form:

 $max \ Z = 3x_1 + 2x_2$ canonical form s.t.  $-x_1 + 2x_2 + x_3$ = 14  $+ x_4$  $3x_1 + 2x_2$  $+ x_5 = 3$  $x_1 - x_2$  $x_1, \ldots, x_5 \ge \theta$ 

#### $\Box x_3, x_4, x_5$ are *fictitious* – or *slack* – variables

|            | $c_j$                       | 3                     | 2                     | 0                     | 0                     | 0                     | constraint |
|------------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
| <u>C</u> B | basic<br>variables          | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | constants  |
| 0          | <i>x</i> <sub>3</sub>       | -1                    | 2                     | 1                     |                       |                       | 4          |
| 0          | $x_4$                       | 3                     | 2                     |                       | 1                     |                       | 14         |
| 0          | <i>x</i> <sub>5</sub>       | 1                     | - 1                   |                       |                       | 1                     | 3          |
|            | $\underline{\tilde{c}}^{T}$ | 3                     | 2                     | 0                     | 0                     | 0                     | Z = 0      |

# $\tilde{c}_{j} = c_{j} - (\underline{c}_{B}^{T} \bullet column \ corresponding \ to \ x_{j})$

- □ The data in  $\tilde{c}^{T}$  indicate that the highest relative profits correspond to  $x_1$  and so we wish to make  $x_1$  a basic variable
- $\Box$  To bring  $x_1$  into the basis requires to evaluate

$$min\left\{\infty,\,\frac{14}{3}\,,\,3\right\}\,=\,3$$

and so  $x_1$  replaces  $x_5$  with the value 3

We evaluate the basic variable at the adjacent

basic feasible solution and convert into canonical

#### form; the new tableau becomes



 $\Box$  We reproduce here the calculation of the  $\tilde{\underline{c}}^{T}$ 

components

$$\tilde{c}_{j} = c_{j} - \left(\underline{c}_{B}^{T} \bullet column \ corresponding \ to \ x_{j}\right)$$

for each nonbasic variable  $x_i$ 

**D** Note that, by definition,  $\tilde{c}_i = \theta$  for each basic

#### variable $x_i$

The calculations give  $\tilde{c}_1 = \theta$  by definition since  $x_1$  is in the basis  $\tilde{c}_2 = 2 - \begin{bmatrix} 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix} = 5 + \frac{\text{indicates possible}}{\text{improvement}}$  $\tilde{c}_3 = \theta$  by definition since  $x_3$  is in the basis  $\tilde{c}_4 = \theta$  by definition since  $x_4$  is in the basis  $\tilde{c}_5 = \theta - \begin{bmatrix} \theta & \theta & 3 \end{bmatrix} \begin{vmatrix} 1 \\ -3 \\ 1 \end{vmatrix} = -3$ 

- □ Clearly, the only choice is to get  $x_2$  into the basis and so we need to establish the limiting condition from the three equations by evaluating  $min\{7, 1, \infty\} = 1$ 
  - and so  $x_2$  replaces  $x_4$ , which becomes a
  - nonbasic variable
- We need to rewrite the equations into canonical

### form for $x_3$ and $x_2$ and construct the new tableau

|                                                              | Cj                                                                          | 3                     | 2                     | 0                     | 0                     | 0                     | constraint |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|--|--|
| <u><i>C</i></u> <u><i>B</i></u>                              | basic<br>variables                                                          | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | constants  |  |  |
| 0                                                            | <i>x</i> <sub>3</sub>                                                       |                       |                       | 1                     | -1/5                  | 8/5                   | 6          |  |  |
| 2                                                            | <i>x</i> <sub>2</sub>                                                       |                       | 1                     |                       | 1/5                   | -3/5                  | 1          |  |  |
| 3                                                            | <i>x</i> <sub>1</sub>                                                       | 1                     |                       |                       | 1/5                   | 2/5                   | 4          |  |  |
|                                                              | $\tilde{\underline{c}}^T$ $\theta$ $\theta$ $\theta$ $-1$ $\theta$ $Z = 14$ |                       |                       |                       |                       |                       |            |  |  |
| $\widetilde{c}_{j} \leq 0 \ \forall \ j \Rightarrow optimum$ |                                                                             |                       |                       |                       |                       |                       |            |  |  |

□ An optimum is at the solution of

 $\boldsymbol{x}_1$ 

$$x_{3} - \frac{1}{5}x_{4} + \frac{8}{5}x_{5} = 6$$

$$x_{2} + \frac{1}{5}x_{4} - \frac{2}{5}x_{5} = 1$$

$$+ \frac{1}{5}x_{4} + \frac{2}{5}x_{5} = 4$$

□ This optimum is given by

$$x_4 = x_5 = 0$$
  
 $x_3 = 6$   
 $x_2 = 1$   
 $x_1 = 4$ 

**Consider the following** *LP* 

 $= 3x_1 + 2x_2$ max Z s.t.  $-x_1 + 2x_2 \leq 4$  $3x_1 + 2x_2 \leq 14$  $x_1 - x_2 \leq 3$  $x_1 \geq \theta, x_2 \geq \theta$ The graphical representation corresponds to



□ The tableau approach leads to *C* which is an optimal solution with

$$x_1 = 4, x_2 = 1, x_3 = 6, x_4 = 0, x_5 = 0$$

 $\Box$  Note that any point along *CD* has Z = 14 and as such D is another optimal solution corresponding to an adjacent basic feasible solution  $\Box$  We may obtain D from C by bringing into the basis the nonbasic variable  $x_5$  in Tableau 3; note that  $\tilde{c}_{5} = \theta$ 

 $\Box$  We may choose  $x_5$  as a basic variable without

affecting Z since its relative profits are  $\theta$ ; we

compute the limiting value of  $x_5$ 

 $\Box$  The limit is imposed by  $x_3$  which, consequently,

leaves the basis

□ The corresponding tableau is:



□ The adjacent feasible solution is given by

$$x_1 = \frac{5}{2}, \ x_2 = \frac{13}{4}, \ x_3 = x_4 = \theta, \ x_5 = \frac{15}{4}$$

□ Note that at this basic feasible solution,

$$\tilde{c}_j \leq \theta \ \forall j$$

#### and so this is also an *optimal solution*

# ALTERNATE OPTIMAL SOLUTION

In general, an *alternate optimal solution* is indicated

whenever there exists a *nonbasic variable*  $x_j$  with  $\tilde{c}_j = \theta$ 

#### in an optimal tableau; such a situation indicates a

#### *non unique optimum* for the *LP*

# MINIMIZATION LP

#### **Consider a minimization** *LP* with the form given

 $min \qquad Z = \sum_{i=1}^{n} c_i x_i$ S.t.

by

$$\underline{A}\underline{x} = \underline{b}$$

$$\underline{x} \geq \underline{\theta}$$

# MINIMIZATION LP

□ We replace the optimality check in the simplex

scheme by the *minimization optimality check*:

if each coefficient  $\tilde{c}_j \ge \theta$ , stop; else, select the

*nonbasic variable* with the *most negative*-valued  $\underline{\tilde{c}}$ 

#### component to become the *new basic variable*

# MINIMIZATION LP

#### **Every minimization** *LP* may be solved as a

#### maximization LP because of equivalence

#### with the solutions of Z and Z' related by

$$min\left\{ Z \right\} = -max\left\{ Z' \right\}$$

 $\Box$  Two variables  $x_i$  and  $x_k$  are tied in the selection of the *nonbasic variable* to replace a current basic variable when  $\tilde{c}_{i} = \tilde{c}_{k}$ ; the choice of the new *nonbasic variable* to enter the basis is *arbitrary* Two or more constraints may give rise to the same *minimum ratio value* in selecting the basic variable to be replaced

### □ We consider the example of the following tableau

|                                                                                                                                              | C <sub>j</sub>        | 0     | 0     | 0                     | 2                     | 0                     | 3/2                   | constraint |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
|                                                                                                                                              | basic<br>variables    | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> | constants  |
| 0                                                                                                                                            | $\boldsymbol{x}_1$    | 1     |       |                       | 1                     | -1                    | 0                     | 2          |
| 0                                                                                                                                            | <i>x</i> <sub>2</sub> |       | 1     |                       | 2                     | 0                     | 1                     | 4          |
| 0                                                                                                                                            | <i>x</i> <sub>3</sub> |       |       | 1                     | 1                     | 1                     | 1                     | 3          |
| <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u> |                       | 0     | 0     | 0                     | 2                     | 0                     | 3/2                   | Z = 0      |

#### candidate for basic variable

- $\bigcirc$  in selecting the *nonbasic variable*  $x_4$  to enter the basis, we observe that the first two constraints give the same minimum ratio: this means that when  $x_4$  is first increased to 2, both the basic variables  $x_1$  and  $x_2$  will reduce to  $\theta$  even though only one of them can become a *nonbasic variable*  $\bigcirc$  we *arbitrarily* select to remove  $x_1$  from the basis
  - to get the new basic feasible solution:

|            | c <sub>j</sub>              | 0     | 0     | 0     | 2     | 0                     | 3/2   | constraint   |
|------------|-----------------------------|-------|-------|-------|-------|-----------------------|-------|--------------|
| <u>C</u> B | basic<br>variables          | $x_1$ | $x_2$ | $x_3$ | $x_4$ | <i>x</i> <sub>5</sub> | $x_6$ | constants    |
| 2          | $x_4$                       | 1     |       |       | 1     | -1                    |       | 2            |
| 0          | <i>x</i> <sub>2</sub>       | - 2   | 1     |       |       | 2                     | 1     | 0            |
| 0          | $x_3$                       | -1    |       | 1     |       | 1                     | 1     | 1            |
|            | $\tilde{\underline{c}}^{T}$ | - 2   | 0     | 0     | 0     | 0                     | 3/2   | <i>Z</i> = 4 |

**O** in the new basic feasible solution

$$x_1 = \theta$$
,  $x_2 = \theta$ ,  $x_3 = 1$ ,  $x_4 = 2$ ,  $x_5 = \theta$ , and  $x_6 = \theta$ ;

#### we treat $x_2$ as a *basic variable* whose value is $\theta$ ;

#### in effect, *x*<sub>2</sub> acts as if it were a *nonbasic variable*

# DEGENERACY

□ A *degenerate basic feasible* solution is one which has one or more *basic variables* with the value  $\theta$ Degeneracy may lead to a number of complications in the simplex approach: an important implication is a minimum ratio of  $\theta$ , so that no new nonbasic variable may be included in the basis and therefore the basis remains unchanged

#### We consider the following example tableau

|            | C j                                                                                                                                          | 0                     | 0                     | 0                     | 2                     | 0                     | 3/2                   | constraint   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|
| <u>C</u> B | basic<br>variables                                                                                                                           | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> | constants    |
| 2          | <i>x</i> <sub>4</sub>                                                                                                                        |                       | 1/2                   |                       | 1                     |                       | 1/2                   | 2            |
| 0          | <i>x</i> <sub>5</sub>                                                                                                                        | -1                    | 1/2                   |                       |                       | 1                     | 1/2                   | 0            |
| 0          | <i>x</i> <sub>3</sub>                                                                                                                        | 1                     | -1                    | 1                     |                       |                       | 0                     | 1            |
|            | <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u> | 0                     | -1                    | 0                     | 0                     | 0                     | 1/2                   | <i>Z</i> = 4 |

## DEGENERACY

the logical choice being the *nonbasic variable*  $x_6$  to enter the basis; this leads to finding the limiting constraint from two equations

$$\frac{1}{2}x_{6} = 2 - x_{4}$$
$$\frac{1}{2}x_{6} = 0 - x_{5}$$

#### and no constraint in the third equation; thus

$$x_6 = \min\{4, 0, \infty\}$$

# DEGENERACY

Degeneracy may result in the construction of new tableaus without improvement in the objective function value, thereby reducing the efficiency of the computational scheme: in effect, an infinite loop – the so-called *cycling* – is possible  $\Box$  Whenever a tie occurs in the minimum ratio rule, an *arbitrary* decision is made regarding which *basic variable* is replaced, and we ignore the undesirable implications of degeneracy and cycling

□ The minimum ratio rule may not be able to deter mine the basic variable to be replaced: this is the case when all equations lead to  $\infty$  as the limit Consider the example and corresponding tableau  $max \quad Z = 2x_1 + 3x_2$ **s.t**. = 2  $x_1 - x_2 + x_3$ 

 $+ x_4 = 4$ 

 $x_i \geq 0, \quad i=1,\ldots,4$ 

 $-3x_1 + x_2$ 

|            |                       | 2     | 3     | 0     | 0     | constraint |
|------------|-----------------------|-------|-------|-------|-------|------------|
| <u>C</u> B | basic<br>variables    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | constants  |
| 0          | <i>x</i> <sub>3</sub> | 1     | -1    | 1     |       | 2          |
| 0          | <i>x</i> <sub>4</sub> | -3    | 1     |       | 1     | 4          |
|            | 2                     | 3     | 0     | 0     | Z = 0 |            |

 $\Box$  The *nonbasic variable*  $x_2$  enters the basis to replace

#### $x_4$ and the new tableau is



 $\Box$  We select  $x_1$  to enter the basis but we are unable

#### to get limiting constraints from the two equations

$$-2x_{1} + x_{3} = 6 \qquad x_{1} = \frac{1}{2}x_{3} - 3$$
$$-3x_{1} + x_{2} = 4 \qquad x_{1} = \frac{1}{3}x_{2} - \frac{4}{3}$$

□ In fact, as  $x_1$  increases so do  $x_2$  and  $x_3$  and *Z* and therefore, the solution is *unbounded* 

The failure of the minimum ratio rule to result in a

bound at any simplex tableau implies that the

#### problem has an *unbounded solution*