ECE 307 - Techniques for Engineering Decisions

Lecture 2. Introduction to Linear Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

OUTLINE

The nature of a programming or an optimization
problem
Linear programming ($L P$): salient characteristics

The $L P$ problem formulation

The $L P$ problem solution

EXAMPLE 1: HIGH/LOW HEEL SHOE CHOICE PROBLEM
\square A lady is headed to a party and is trying to find a pair of shoes to wear; the choice is narrowed down to two possible choices:

O a high heel pair; and
O a low heel pair
\square The high heel shoes look more beautiful but are not as comfortable as the competing pair
\square Which pair should she choose?

MODEL FORMULATION

\square We first quantify our assessment along the two dimensions of looks and comfort in a table

aspect	maximum value	assessment		weighting heels
factor (\%)				$

Next, we represent the decision in terms of two decision variables:

MODEL FORMULATION

$$
x_{H}=\left\{\begin{array}{ll}
1 & \text { choose high } \\
0 & \text { otherwise }
\end{array} \quad x_{L}= \begin{cases}1 & \text { choose low } \\
0 & \text { otherwise }\end{cases}\right.
$$

\square We formulate the objective to be the maximization
of the weighted assessment
$\max \{70 \%$ * aesthetics $+30 \%$ * comfort $\}$
\square We state the objective in terms of the defined decision variables
$\max Z=x_{H}[(4.2)(0.7)+(3.5)(0.3)]+x_{L}[(3.6)(0.7)+(4.8)(0.3)]$

MODEL FORMULATION

\square Next, we consider the problem constraints:

O only one pair of shoes can be selected

O each decision variable is nonnegative

We express the constraints in terms of x_{H} and \boldsymbol{x}_{L}

$$
\begin{aligned}
& x_{H}+x_{L}=1 \\
& x_{H} \geq 0, x_{L} \geq 0
\end{aligned}
$$

PROBLEM STATEMENT SUMMARY

\square Decision variables:

$$
x_{H}=\left\{\begin{array}{l}
1 \\
\text { choose high } \\
0
\end{array} \quad x_{L}= \begin{cases}1 & \text { choose low } \\
0 & \text { otherwise }\end{cases}\right.
$$

\square Objective function:

$$
\max Z=3.99 x_{H}+3.96 x_{L}
$$

\square Constraints:

$$
\begin{aligned}
& x_{H}+x_{L}=1 \\
& x_{H} \geq 0, x_{L} \geq 0
\end{aligned}
$$

THE OPTIMAL SOLUTION

\square We determine the values x_{H}^{*} and x_{L}^{*} which result in the value of Z^{*} such that

$$
Z^{*}=Z\left(x_{H}^{*}, x_{L}^{*}\right) \geq Z\left(x_{H}, x_{L}\right)
$$

for all feasible $\left(x_{H}, x_{L}\right)$
\square We call such a solution an optimal solution
\square A feasible solution is one that satisfies all the constraints on the problem
The optimal solution, denoted by $\left(x_{H}^{*}, x_{L}^{*}\right)$, is selected from all the feasible solutions to the problem so as to satisfy (\dagger)

SOLUTION APPROACH: EXHAUSTIVE SEARCH

\square We enumerate all the feasible solutions: in this problem there are only two alternatives:

$$
A:\left\{\begin{array}{l}
x_{H}=1 \\
x_{L}=0
\end{array} \quad B:\left\{\begin{array}{l}
x_{H}=0 \\
x_{L}=1
\end{array}\right.\right.
$$

\square We evaluate Z for A and B and compare

$$
Z_{A}=3.99 \quad Z_{B}=3.96
$$

so that $Z_{A}>Z_{B}$ and so A is the optimal choice
\square The optimal solution is

$$
x_{H}^{*}=1, \quad x_{L}^{*}=0 \quad \text { and } \quad Z^{*}=3.99
$$

CHARACTERISTICS OF A PROGRAMMING/OPTIMIZATION PROBLEM

\square The objective is to select the decision among the various alternatives and therefore requires first the definition of the decision variables
\square We determine the "best" decision simply based on the objective function value; to do so we require the mathematical formulation of the objective function
\square The decision must satisfy each specified constraint and so we require the mathematical statement of the problem constraints

CLASSIFICATION OF PROGRAMMING PROBLEMS

The problem statement is characterized by :
O decision variables

O objective function

non linear

O constraints

PROGRAMMING PROBLEM CLASSES

Linear/nonlinear programming

Static/dynamic programming

Integer programming

Mixed programming

EXAMPLE 2: CONDUCTOR PROBLEM

A company is producing two types of conductors for $\mathbf{E H V}$ transmission lines

type	conductor	production capacity (unit/day)	metal needed (tons/unit)	profits (\$/unit)
1	ACSR 84/19	4	$1 / 6$	3
2	ACSR 18/7	6	$1 / 9$	5

\square The supply department can provide up to 1 ton of metal each day
\square We schedule the production so as to maximize the profits of the company

PROBLEM ANALYSIS

\square Formulation of the objective: to maximize the profits of the company

Means to attain this objective: determine how many units of product 1 and of product 2 to produce each day

Consideration of all the constraints: the daily production capacity limits, the daily metal supply limit and common sense requirements

MODEL CONSTRUCTION

\square We define the decision variables to be

$$
\begin{aligned}
& x_{1}=\text { number of type } 1 \text { units produced per day } \\
& x_{2}=\text { number of type } 2 \text { units produced per day }
\end{aligned}
$$

\square We define the objective to be

$$
\begin{aligned}
Z & =\text { profits }(\$ / d a y) \\
& =3 x_{1}+5 x_{2}
\end{aligned}
$$

\square Sanity check for units of the objective function

$$
(\$ / d a y)=(\$ / u n i t) \cdot(u n i t / d a y)
$$

PROBLEM STATEMENT

\square Objective function:

$$
\max Z=3 x_{1}+5 x_{2}
$$

\square Constraints:
O capacity limits:

$$
x_{1} \leq 4 \quad x_{2} \leq 6
$$

O metal supply limit:

$$
\frac{x_{1}}{6}+\frac{x_{2}}{9} \leq 1
$$

O common sense requirements:

$$
x_{1} \geq 0, x_{2} \geq 0
$$

PROBLEM STATEMENT

$$
\max Z=3 x_{1}+5 x_{2}
$$

s.t.

$$
\begin{gathered}
x_{1} \leq 4 \\
x_{2} \leq 6 \\
\frac{x_{1}}{6}+\frac{x_{2}}{9} \leq 1 \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0
\end{gathered}
$$

VISUALIZATION OF THE FEASIBLE REGION

VISUALIZATION OF THE FEASIBLE REGION

VISUALIZATION OF THE FEASIBLE REGION

THE FEASIBLE REGION

FEASIBLE SOLUTION SPACE

CONTOURS OF CONSTANT Z

OPTIMAL SOLUTION

\square For this simple problem, we can graphically obtain
the optimal solution
\square The optimal solution of this problem is:

$$
x_{1}^{*}=2 \text { and } x_{2}^{*}=6
$$

The objective value at the optimal solution is

$$
Z^{*}=3 x_{1}^{*}+5 x_{2}^{*}=36
$$

LINEAR PROGRAMMING (LP) PROBLEM DEFINITION

A linear programming problem is an optimization
problem with a linear objective function and linear
constraints.

EXAMPLE 3: ONE-POTATO, TWOPOTATO PROBLEM

\square Mr. Spud manages the Potatoes-R-Us Co. which processes potatoes into packages of freedom fries (F), hash browns (H) and chips (C)

Mr. Spud can buy potatoes from two sources; each source has distinct characteristics/limits

The problem is to determine the respective quantities Mr. Spud needs to buy from source 1 and from source 2 so as to maximize his profits

EXAMPLE 3: ONE-POTATO, TWOPOTATO PROBLEM
\square The given data are summarized in the table

product	source 1 uses (\%)	source 2 uses (\%)	sales limit (tons)
F	20	30	1.8
H	20	10	1.2
C	30	30	2.4
profits (\$/ton)	5	6	-

\square The following assumptions hold:
O 30% waste for each source
O production may not exceed the sales limit

ANALYSIS

\square Decision variables:

$$
\begin{aligned}
& x_{1}=\text { quantity purchased from source } 1 \\
& x_{2}=\text { quantity purchased from source } 2
\end{aligned}
$$

\square Objective function:

$$
\max Z=5 x_{1}+6 x_{2}
$$

\square Constraints:

$$
\begin{aligned}
& 0.2 x_{1}+0.3 x_{2} \leq 1.8(F) \\
& 0.2 x_{1}+0.1 x_{2} \leq 1.2(H) \quad x_{1} \geq 0, x_{2} \geq 0 \\
& 0.3 x_{1}+0.3 x_{2} \leq 2.4(C)
\end{aligned}
$$

FEASIBLE REGION DETERMINATION

THE FEASIBLE REGION

EXAMPLE 3: CONTOURS OF CONSTANT Z

THE OPTIMAL SOLUTION

The optimal solution of this problem is:

$$
x_{1}^{*}=4.5 \quad x_{2}^{*}=3
$$

\square The objective value at the optimal solution is:

$$
Z^{*}=5 x_{1}^{*}+6 x_{2}^{*}=40.5
$$

IMPORTANT OBSERVATIONS

\square Constant Z lines are parallel and change monotonically along the direction normal to the contours of constant values of Z
\square An optimal solution must be at one of the corner points of the feasible region: fortuitously, there are only a finite number of corner points
\square If a particular corner point gives a better solution (in terms of its Z value) than that at every other adjacent corner point, then, it is an optimal solution

CONCEPTUAL SOLUTION PROCEDURE

Initialization step: start at a corner point
\square Iteration step: move to an improved adjacent corner point and repeat this step as many times as needed

Stopping rule: stop when the corner point solution is better than that at each adjacent corner point
\square This conceptual procedure forms the basis of the simplex approach

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

step	x_{2}	x_{1}	Z
0	0	0	0
1	0	6	36
2	4.5	3	40.5
3	6	0	30

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

1. Start at $(0,0)$ with $Z(0,0)=0$
2. (i) Move from $(0,0)$ to $(0,6), Z(0,6)=36$
(ii) Move from $(0,6)$ to $(4.5,3)$; compute $Z(4.5,3)=40.5$
3. Compare the objective at $(4.5,3)$ to values at $(6,0)$ and at (0,6):

$$
\begin{aligned}
& Z(4.5,3) \geq Z(6,0) \\
& Z(4.5,3) \geq Z(0,6)
\end{aligned}
$$

therefore, $(4.5,3)$ is optimal

REVIEW

K Key requirements of a programming problem:
O to make a decision, we must define the decision
variables
O to achieve the specified objective, we must express mathematically the objective function

O to ensure feasibility, the decision variables must satisfy each mathematically formulated constraint

REVIEW

Key attributes of an $L P$
O the objective function is linear
O the constraints are linear

Basic steps in formulating a programming problem
O definition of decision variables

O statement of the objective function
O formulation of the constraints

REVIEW

\square Words of caution: care is required with units and attention is needed to not ignore the implicit constraints, such as nonnegativity, and the common sense requirements in an $L P$ formulation
\square Graphical solution approach for two-variable problems

O feasible region determination
O contours of constant Z
O identification of the vertex with optimal Z^{*}

EXAMPLE 4 : QUALITY CONTOL INSPECTION OF GOODS PRODUCED

\square There are $\mathbf{8}$ grade 1 and 10 grade 2 inspectors available for $Q C$ inspection; at least $\mathbf{1 , 8 0 0}$ pieces must be inspected in each 8-hour day
\square Problem data are summarized below:

grade level	speed $($ unit/h $)$	accuracy $(\%)$	wages $(\$ / h)$
1	25	98	4
2	15	95	3

[^0]
EXAMPLE 4: INSPECTION OF GOODS PRODUCED

\square Each error costs \$2
\square The problem is to determine the optimal
assignment of inspectors, i.e., the number of
inspectors of grade 1 and that of grade 2 to result in the least-cost $Q C$ inspection effort

EXAMPLE 4: FORMULATION

Definition of decision variables:

$x_{1}=$ number of grade 1 inspectors assigned
$\boldsymbol{x}_{2}=$ number of grade $\mathbf{2}$ inspectors assigned
Objective function
O optimal assignment: minimum costs
O costs = wages + errors

EXAMPLE 4: FORMULATION

- each grade 1 inspector costs:

$$
4+2(25)(0.02)=5 \$ / h
$$

- each grade 2 inspector costs:

$$
3+2(15)(0.05)=4.5 \$ / h
$$

- total daily inspection costs in \$ are

$$
Z=8\left[5 x_{1}+4.5 x_{2}\right]=40 x_{1}+36 x_{2}
$$

EXAMPLE 4: FORMULATION

[Constraints:

O job completion:

$$
\begin{aligned}
& 8(25) x_{1}+8(15) x_{2} \geq 1,800 \\
& \Leftrightarrow 200 x_{1}+120 x_{2} \geq 1,800 \\
& \Leftrightarrow 5 x_{1}+3 x_{2} \geq 45
\end{aligned}
$$

O availability limit:

$$
\begin{aligned}
& x_{1} \leq 8 \\
& x_{2} \leq 10
\end{aligned}
$$

O nonnegativity:

$$
x_{1} \geq 0, x_{2} \geq 0
$$

EXAMPLE 4: PROBLEM STATEMENT SUMMARY

Decision variables:
$x_{1}=$ number of grade 1 inspectors assigned $x_{2}=$ number of grade 2 inspectors assigned
\square Objective function:

$$
\min Z=40 x_{1}+36 x_{2}
$$

\square Constraints:

$$
\begin{aligned}
5 x_{1}+3 x_{2} & \geq 45 \\
x_{1} & \leq 8 \\
x_{2} & \leq 10 \\
x_{1} & \geq 0, x_{2} \geq 0
\end{aligned}
$$

MULTI - PERIOD SCHEDULING

\square More than one period is involved
\square The result of each period affects the initial
conditions for the next period and therefore the
solution
\square We need to define variables to take into account the initial conditions in addition to the decision variables of the problem

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

\square We consider a single operator of a system consisting of two water reservoirs with a hydroelectric plant attached to each reservoir

We schedule the two power plant operations over
a two-period horizon
\square We are interested in the plan that maximizes the total revenues of the system operator

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

EXAMPLE 5:kAf RESERVOIR DATA

parameter	reservoir A	reservoir \boldsymbol{B}
maximum capacity	2,000	1,500
predicted inflow in period 1	200	40
predicted inflow in period 2	130	15
minimum Illowable level	1,200	800
level at start of period 1	1,900	850

EXAMPLE 5: SYSTEM CHARACTERISTICS

reservoir	max $k A f$ for generation per period
A	150
B	87.5

EXAMPLE 5: SYSTEM CHARACTERISTICS

\square Two-tier price for the $M W h$ demand in each period
O up to $50,000 M W h$ can be sold @ $20 \$ I M W h$
\square Two-tier price for the $M W h$ demand in each p
O up to $50,000 M W h$ can be sold @ $20 \$ / M W h$
O all additional MWh are sold @ 14 \$ IMWh \$/MWh
non-linear objective function

50,000

EXAMPLE 5: DECISION VARIABLES

Variable	quantity denoted	units
x_{H}^{i}	energy sold at 20 \$/MWh	MWh
x_{L}^{i}	energy sold at $14 \$ / M W h$	MWh
\boldsymbol{w}_{4}^{i}	plant A water supply for generation	$k A f$
\boldsymbol{w}_{B}^{i}	plant B water supply for generation	$k A f$
s_{A}^{i}	reservoir A spill	$k A f$
s_{B}^{i}	reservoir B spill	$k A f$
$r_{\text {a }}^{i}$	reservoir A end of period i level	$k A f$
r_{B}^{i}	reservoir B end of period i level	$k A f$

superscript i denotes period $i, i=1,2$

EXAMPLE 5: OBJECTIVE FUNCTION

maximize total revenues from sales

4 of the 16 decision variables 2 for each period
units of Z are in $\$$

EXAMPLE 5: CONSTRAINTS

- Period 1 constraints

O energy conservation in a lossless system

- total generation $400 w_{A}^{1}+\mathbf{2 0 0} w_{B}^{1} \quad(M W h)$
- total sales $\boldsymbol{x}_{H}^{1}+x_{L}^{1} \quad(M W h)$
- losses are negelected and so

$$
x_{H}^{1}+x_{L}^{1}=400 w_{A}^{1}+200 w_{B}^{1}
$$

O maximum available capacity limits

$$
\begin{aligned}
& \boldsymbol{w}_{A}^{1} \leq 150 \\
& \boldsymbol{w}_{B}^{1} \leq \mathbf{8 7 . 5}
\end{aligned}
$$

EXAMPLE 5: CONSTRAINTS

O reservoir conservation of flow relations

- reservoir A :

EXAMPLE 5: CONSTRAINTS

O limitations on reservoir variables

- reservoir A :

$$
\begin{equation*}
1,200 \leq r_{A}^{1} \leq 2,000 \tag{kAf}
\end{equation*}
$$

- reservoir B:

$$
\begin{equation*}
800 \leq r_{B}^{1} \leq 1,500 \tag{kAf}
\end{equation*}
$$

O sales constraint

$$
\begin{equation*}
\boldsymbol{x}_{H}^{1} \leq \mathbf{5 0 , 0 0 0} \tag{kAf}
\end{equation*}
$$

EXAMPLE 5: CONSTRAINTS

\square Period 2 constraints

O energy conservation in a lossless system

- total generation $400 w_{A}^{2}+200 w_{B}^{2} \quad(M W h)$
- total sales

$$
x_{H}^{2}+x_{L}^{2} \quad(M W h)
$$

- losses are neglected and so

$$
x_{H}^{2}+x_{L}^{2}=400 w_{A}^{2}+200 w_{B}^{2}
$$

O maximum available capacity limits

$$
\begin{aligned}
& w_{A}^{2} \leq 150 \\
& w_{B}^{2} \leq 87.5
\end{aligned}
$$

EXAMPLE 5: CONSTRAINTS

O reservoir conservation of flow relations

- reservoir A :

EXAMPLE 5: CONSTRAINTS

O limitations on reservoir variables

- reservoir A :

$$
1,200 \leq r_{A}^{2} \leq 2,000
$$

- reservoir B:

$$
\begin{equation*}
800 \leq r_{B}^{2} \leq 1,500 \tag{kAf}
\end{equation*}
$$

O sales constraint

$$
\begin{equation*}
x_{H}^{2} \leq 50,000 \tag{kAf}
\end{equation*}
$$

EXAMPLE 5: PROBLEM STATEMENT

$\square 16$ decision variables:

$$
x_{H}^{i}, x_{L}^{i}, w_{A}^{i}, w_{B}^{i}, s_{A}^{i}, s_{B}^{i}, r_{A}^{i}, r_{B}^{i}, \quad i=1,2
$$

\square Objective function:

$$
\max Z=20\left(x_{H}^{1}+x_{H}^{2}\right)+14\left(x_{L}^{1}+x_{L}^{2}\right)
$$

\square Constraints:
O 20 constraints for the periods 1 and 2
O non-negativity constraints on all variables

EXAMPLE 6: DISHWASHER AND WASHING MACHINE PROBLEM

\square The Appliance Co. manufactures dishwashers and washing machines

The sales targets for next four quarters are:

product	variable	quarter t			
		1	2	3	4
dishwasher	D_{t}	2,000	1,300	3,000	1,000
washing machine	W_{t}	1,200	1,500	1,000	1,400

EXAMPLE 6: QUARTERLY COST COMPONENTS

cost component		parameter	quarter t costs (\$/unit)				
		1	2	3	4		
manufacturing (\$/unit)	dishwasher		c_{t}	125	130	125	126
	washing machine	\boldsymbol{v}_{t}	90	100	95	95	
storage (\$/unit)	dishwasher	$\boldsymbol{j}_{\boldsymbol{t}}$	5.0	4.5	4.5	4.0	
	washing machine	\boldsymbol{k}_{t}	4.3	3.8	3.8	3.3	
hourly labor (\$ /hour)		$\boldsymbol{p}_{\boldsymbol{t}}$	6.0	6.0	6.8	6.8	

EXAMPLE 6: CONSTRAINTS

\square Each dishwasher (washing machine) requires 1.5
(2) hours of labor
\square The labor hours in each quarter cannot grow or decrease by more than 10%; there are $5,000 h$ of labor in the quarter preceding the first quarter
\square At the start of the first quarter, there are 750 dishwashers and 50 washing machines in storage

EXAMPLE 6: THE PROBLEM

How to schedule the production in each of the
four quarters so as to minimize the costs while
meeting the sales targets?

EXAMPLE 6: QUARTER t DECISION VARIABLES

symbol	variable
d_{t}	number of dishwashers produced
w_{t}	number of washing machines produced
r_{t}	final inventory of dishwashers
s_{t}	final inventory of washing machines
h_{t}	available labor hours during Q_{t}

EXAMPLE 6: OBJECTIVE FUNCTION

minimize the total costs for the four quarters

EXAMPLE 6: CONSTRAINTS

Q Quarterly flow balance relations:

EXAMPLE 6: CONSTRAINTS

Quarterly labor constraints

$$
\begin{aligned}
& \left\{\begin{array}{l}
1.5 d_{t}+2 w_{t}-h_{t} \leq 0 \\
0.9 h_{t-1} \leq h_{t} \leq 1.1 h_{t-1}
\end{array} t=1,2,3,4\right.
\end{aligned} h_{0=5,000} \quad \begin{aligned}
& \text { h }
\end{aligned}
$$

EXAMPLE 6: PROBLEM STATEMENT

d_{1}	w_{1}	r_{1}	s_{1}	h_{1}	d_{2}	w_{2}	r_{2}	s_{2}	h_{2}	d_{3}	w_{3}	r_{3}	s_{3}	h_{3}	d_{4}	w_{4}	r_{4}	s_{4}	h_{4}	
1		-1																		$=1250$
	1		-1																	$=1150$
1.5	2			-1																≤ 0
				1																≥ 4500
				1																≤ 5500
		1			1		-1													$=1300$
			1			1		-1												$=1500$
					1.5	2			-1											≤ 0
				-0.9					1											≥ 0
				-1.1					1											≤ 0
						1			1		-1								$=3000$	
							1			1		-1							$=1000$	
									1.5	2			-1						≤ 0	
								-0.9					1						≥ 0	
								-1.1					1						≤ 0	
												1			1		-1			$=1000$
													1			1		-1		$=1400$
															1.5	2			-1	≤ 0
														-0.9					1	≥ 0
													-1.1					1	≤ 0	
125	90	5.0	4.3	6.0	130	100	4.5	3.8	6.0	125	95	4.5	3.8	6.8	126	95	4.0	3.3	6.8	minimize

LINEAR PROGRAMMING PROBLEM

$\max (\min) \quad Z=c_{1} x_{1}+\ldots+c_{n} x_{n}$
s.t.

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2} & +\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2} & +\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2} & +\ldots+a_{m n} x_{n}=b_{m} \\
x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{array}
$$

STANDARD FORM OF LP (SFLP)

$$
\begin{array}{r}
\max (\min) Z=\underline{c}^{T} \underline{x} \\
\underline{A} \underline{x}=\underline{b} \\
\underline{x} \geq \underline{0}
\end{array}
$$

CONVERSION OF LP INTO SFLP

\square An inequality may be converted into an equality by defining an additional nonnegative slack variable $\boldsymbol{x}_{\text {slack }} \geq 0$

O replace the given inequality $\leq \boldsymbol{b}$ by

$$
\text { inequality }+x_{\text {slack }}=b
$$

O replace the given inequality $\geq b$ by

$$
\text { inequality }-\boldsymbol{x}_{\text {slack }}=b
$$

CONVERSION OF LP INTO SFLP

\square An unsigned variable x_{u} is one whose sign is not specified
x_{u} may be converted into two signed variables x_{+} and x. with

$$
x_{+}=\left\{\begin{array}{ll}
x_{u} & x_{u} \geq 0 \\
0 & x_{u}<0
\end{array} \quad x_{-}=\left\{\begin{array}{cc}
0 & x_{u} \geq 0 \\
-x_{u} & x_{u}<0
\end{array}\right.\right.
$$

so that x_{u} is replaced by

$$
x_{u}=x_{+}-x_{-}
$$

SFLP CHARACTERISTICS

$\square \underline{x}$ is feasible if and only if $\underline{x} \geq \underline{0}$ and $\underline{A} \underline{x}=b$
$\square S=\{\underline{x} \mid \underline{A} \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\}$ is the feasible region
$\square S=\varnothing \Rightarrow L P$ is infeasible
$\square \underline{x}^{*}$ is optimal $\Rightarrow \underline{c}^{T} \underline{x}^{*} \geq \underline{c}^{T} \underline{x}, \underline{x} \in S$
$\square \underline{x}^{*}$ may be unique, or may have multiple values
$\square \underline{x}^{*}$ may be unbounded

[^0]: ECE 307 © 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

