ECE 307 – Techniques for Engineering Decisions

Lecture 2. Introduction to Linear Programming

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

OUTLINE

□ The nature of a programming or an optimization

problem

- □ Linear programming (*LP*): salient characteristics
- □ The *LP* problem formulation
- □ The *LP* problem solution

Extensive illustrations with numerical examples

EXAMPLE 1: HIGH/LOW HEEL SHOE CHOICE PROBLEM

- □ A lady is headed to a party and is trying to find a
 - pair of shoes to wear; the choice is narrowed
 - down to two possible choices:
 - **O** a high heel pair; and
 - O a low heel pair
- The high heel shoes look more beautiful but are
 - not as comfortable as the competing pair
- □ Which pair should she choose?

MODEL FORMULATION

□ We first quantify our assessment along the two dimensions of *looks* and *comfort* in a table

aspect	maximum value	assessment		weighting
		high heels	low heels	factor (%)
aesthetics	5.0	4.2	3.6	70
comfort	5.0	3.5	4.8	30

□ Next, we represent the decision in terms of two decision variables:

MODEL FORMULATION

$$x_{H} = \begin{cases} 1 & choose \ high \\ 0 & otherwise \end{cases} \quad x_{L} = \begin{cases} 1 & choose \ low \\ 0 & otherwise \end{cases}$$

□ We formulate the objective to be the maximization

of the *weighted* assessment

max { 70 % * *aesthetics* + 30 % * *comfort* }

□ We state the objective in terms of the defined

decision variables

 $max Z = x_H [(4.2)(0.7) + (3.5)(0.3)] + x_L [(3.6)(0.7) + (4.8)(0.3)]$

MODEL FORMULATION

□ Next, we consider the problem constraints:

O only one pair of shoes can be selected

O each decision variable is nonnegative

□ We express the constraints in terms of x_H and x_L x_H + x_L = 1

 $x_{H} \geq \theta, x_{L} \geq \theta$

PROBLEM STATEMENT SUMMARY

Decision variables:

$$x_{H} = \begin{cases} 1 & choose \ high \\ 0 & otherwise \end{cases} \quad x_{L} = \begin{cases} 1 & choose \ low \\ 0 & otherwise \end{cases}$$

Objective function:

$$max Z = 3.99 x_H + 3.96 x_L$$

Constraints:

$$\begin{array}{rcl} x_{H} & + & x_{L} & = & 1 \\ \\ x_{H} & \geq & \theta \, , \, x_{L} & \geq & \theta \end{array}$$

THE OPTIMAL SOLUTION

□ We determine the values x_{H}^{*} and x_{L}^{*} which result in the value of Z^{*} such that

$$Z^* = Z\left(x_H^*, x_L^*\right) \ge Z\left(x_H, x_L\right) \qquad (\dagger)$$

for all *feasible* $\left(x_H, x_L\right)$

- □ We call such a solution *an optimal solution*
- □ A *feasible* solution is one that satisfies all the constraints on the problem
- □ The *optimal* solution, denoted by $\left(x_{H}^{*}, x_{L}^{*}\right)$, is selected from all the *feasible* solutions to the problem so as to satisfy (†)

SOLUTION APPROACH: EXHAUSTIVE SEARCH

□ We enumerate all the feasible solutions: in this problem there are only two alternatives:

$$A: \begin{cases} x_H = 1 \\ x_L = 0 \end{cases} \qquad B: \begin{cases} x_H = 0 \\ x_L = 1 \end{cases}$$

□ We evaluate *Z* for *A* and *B* and compare

$$Z_A = 3.99$$
 $Z_B = 3.96$

so that $Z_A > Z_B$ and so *A* is the optimal choice □ The *optimal* solution is

$$x_{H}^{*}=1$$
, $x_{L}^{*}=0$ and $Z^{*}=3.99$

CHARACTERISTICS OF A PROGRAMMING/OPTIMIZATION PROBLEM

- The objective is to select the decision among the various alternatives and therefore requires first the *definition* of the *decision variables*
- We determine the "best" decision simply based on the objective function value; to do so we require the mathematical formulation of the objective function
 The decision must satisfy each specified constraint and so we require the mathematical statement of the

problem constraints

CLASSIFICATION OF PROGRAMMING PROBLEMS

The problem statement is characterized by :

PROGRAMMING PROBLEM CLASSES

Linear/nonlinear programming

□ Static/dynamic programming

□ Integer programming

Mixed programming

EXAMPLE 2: CONDUCTOR PROBLEM

A company is producing two types of conductors for *EHV* transmission lines

type	conductor	production capacity (unit/day)	metal needed (tons/unit)	profits (\$/unit)
1	ACSR 84/19	4	1/6	3
2	ACSR 18/7	6	1/9	5

- The supply department can provide up to 1 ton of metal each day
- We schedule the production so as to *maximize* the profits of the company

PROBLEM ANALYSIS

- □ Formulation of the objective: to *maximize* the profits of the company
- Means to attain this objective: determine how many units of product 1 and of product 2 to produce each day
- Consideration of all the constraints: the daily production capacity limits, the daily metal supply
 - limit and common sense requirements

MODEL CONSTRUCTION

□ We define the decision variables to be

 x_1 = number of type 1 units produced per day

 x_2 = number of type 2 units produced per day

□ We define the objective to be

$$Z = profits (\$/day)$$

$$= 3 x_1 + 5 x_2$$

□ Sanity check for units of the objective function $(\$/day) = (\$/unit) \cdot (unit/day)$

PROBLEM STATEMENT

□ Objective function:

$$max Z = 3x_1 + 5x_2$$

Constraints:

O capacity limits:

$$x_1 \le 4 \qquad x_2 \le 6$$

O metal supply limit:

$$\frac{x_1}{6} + \frac{x_2}{9} \le 1$$

O common sense requirements: $x_1 ≥ 0$, $x_2 ≥ 0$

PROBLEM STATEMENT

VISUALIZATION OF THE FEASIBLE REGION

VISUALIZATION OF THE FEASIBLE REGION

VISUALIZATION OF THE FEASIBLE REGION

THE FEASIBLE REGION

FEASIBLE SOLUTION SPACE

CONTOURS OF CONSTANT Z

OPTIMAL SOLUTION

□ For this simple problem, we can *graphically* obtain

the optimal solution

□ The *optimal* solution of this problem is:

$$x_{1}^{*} = 2$$
 and $x_{2}^{*} = 6$

□ The objective value at the *optimal* solution is

$$Z^* = 3x_1^* + 5x_2^* = 36$$

LINEAR PROGRAMMING (LP) PROBLEM DEFINITION

A linear programming problem is an optimization

problem with a linear objective function and linear

constraints.

EXAMPLE 3: ONE-POTATO, TWO-POTATO PROBLEM

- □ Mr. Spud manages the *Potatoes-R-Us Co.* which
 - processes potatoes into packages of freedom
 - fries (F), hash browns (H) and chips (C)
- Mr. Spud can buy potatoes from two sources; each source has distinct characteristics/limits
- □ The problem is to determine the respective
 - quantities Mr. Spud needs to buy from source 1
 - and from source 2 so as to maximize his profits

EXAMPLE 3: ONE-POTATO, TWO-POTATO PROBLEM

□ The given data are summarized in the table

product	source 1 uses (%)	source 2 uses (%)	sales limit (tons)
F	20	30	1.8
H	20	10	1.2
С	30	30	2.4
profits (\$/ton)	5	6	_

□ The following assumptions hold:

O 30 % waste for each source

O production may not exceed the sales limit

ANALYSIS

Decision variables:

x₁ = quantity purchased from source 1
x₂ = quantity purchased from source 2
Objective function:

$$max Z = 5x_1 + 6x_2$$

Constraints:

$$\begin{array}{l} 0.2 \, x_1 + \, 0.3 \, x_2 \, \leq \, 1.8 \ (F) \\ 0.2 \, x_1 + \, 0.1 \, x_2 \, \leq \, 1.2 \ (H) \quad x_1 \geq \, \theta \, , x_2 \geq \, \theta \\ 0.3 \, x_1 + \, 0.3 \, x_2 \, \leq \, 2.4 \ (C) \end{array}$$

FEASIBLE REGION DETERMINATION

THE FEASIBLE REGION

EXAMPLE 3: CONTOURS OF CONSTANT Z

THE OPTIMAL SOLUTION

□ The optimal solution of this problem is:

$$x_{1}^{*} = 4.5$$
 $x_{2}^{*} = 3$

□ The objective value at the optimal solution is:

$$Z^* = 5x_1^* + 6x_2^* = 40.5$$

IMPORTANT OBSERVATIONS

- Constant Z lines are parallel and change monotonically along the direction normal to the contours of constant values of Z
- An *optimal* solution must be at one of the *corner points* of the feasible region: fortuitously, there are only a *finite* number of *corner points*
- If a particular *corner point* gives a better solution
 (in terms of its *Z* value) than that at every other
 adjacent *corner point*, then, it is an *optimal* solution

CONCEPTUAL SOLUTION PROCEDURE

- □ Initialization step: start at a *corner point*
- Iteration step: move to an improved *adjacent corner point* and repeat this step as many times as needed
- □ Stopping rule: stop when the *corner point* solution
 - is **better** than that at each *adjacent* corner point
- □ This conceptual procedure forms the basis of the

simplex approach

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3 : THE SIMPLEX APPROACH SOLUTION

step	<i>x</i> ₂	<i>x</i> ₁	Z
0	0	0	0
1	0	6	36
2	4.5	3	40.5
3	6	0	30

EXAMPLE 3 : THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3 : THE SIMPLEX APPROACH SOLUTION

- 1. Start at (θ, θ) with $Z(\theta, \theta) = \theta$
- 2. (*i*) Move from (θ, θ) to $(\theta, 6)$, $Z(\theta, 6) = 36$

(*ii*) Move from (θ ,6) to (4.5,3); compute Z (4.5,3) = 40.5

3. Compare the objective at (4.5,3) to values at (6, θ) and at (θ ,6):

$Z(4.5,3) \ge Z(6,\theta)$ $Z(4.5,3) \ge Z(\theta,6)$

therefore, (4.5,3) is *optimal*

REVIEW

□ Key requirements of a programming problem:

O to make a decision, we must define the *decision*

variables

- **O** to achieve the specified objective, we must
 - express mathematically the *objective function*
- **O** to ensure *feasibility*, the decision variables must

satisfy each *mathematically formulated constraint*

REVIEW

- □ Key attributes of an *LP*
 - **O** the objective function is *linear*
 - **O** the constraints are *linear*
- Basic steps in formulating a programming problem
 - **O** definition of decision variables
 - **O** statement of the objective function
 - **O** formulation of the constraints

REVIEW

- Words of caution: care is required with units and attention is needed to not ignore the *implicit constraints*, such as nonnegativity, and the common sense requirements in an LP formulation Graphical solution approach for two-variable problems
 - **O** feasible region determination
 - **O** contours of constant Z
 - O identification of the vertex with optimal Z^*

EXAMPLE 4 : QUALITY CONTOL INSPECTION OF GOODS PRODUCED

□ There are 8 grade 1 and 10 grade 2 inspectors

available for *QC* inspection; at least 1,800 pieces

must be inspected in each 8-hour day

□ Problem data are summarized below:

grade level	speed (unit/h)	accuracy (%)	wages (\$/h)		
1	25	98	4		
2	15	95	3		

EXAMPLE 4 : INSPECTION OF GOODS PRODUCED

□ Each error costs *\$* 2

□ The problem is to determine the *optimal*

assignment of inspectors, i.e., the number of

inspectors of grade 1 and that of grade 2 to result

in the least-cost *QC* inspection effort

EXAMPLE 4 : FORMULATION

Definition of decision variables:

 x_1 = number of grade 1 inspectors assigned

 x_2 = number of grade 2 inspectors assigned

Objective function

O optimal assignment: minimum costs

O costs = wages + errors

EXAMPLE 4 : FORMULATION

each grade 1 inspector costs:

4 + 2 (25)(0.02) = 5 \$ / h

• each grade 2 inspector costs:

$$3 + 2 (15)(0.05) = 4.5 \ \text{\$ / h}$$

total daily inspection costs in \$ are

$$Z = 8[5x_1 + 4.5x_2] = 40x_1 + 36x_2 \qquad (\$)$$

EXAMPLE 4 : FORMULATION

Constraints:

O job completion:

 $8(25)x_{1} + 8(15)x_{2} \ge 1,800$ $\Leftrightarrow 200x_{1} + 120x_{2} \ge 1,800$ $\Leftrightarrow 5x_{1} + 3x_{2} \ge 45$ $\bigcirc \text{ availability limit:}$ $x_{1} \le 8$ $x_{2} \le 10$

O nonnegativity:

 $x_1 \geq \theta, x_2 \geq \theta$

EXAMPLE 4 : PROBLEM STATEMENT SUMMARY

Decision variables:

 x_1 = number of grade 1 inspectors assigned x_2 = number of grade 2 inspectors assigned

□ Objective function:

 $min Z = 40 x_1 + 36 x_2$

 $\Box \text{ Constraints:} 5x_1 + 3x_2 \ge 45$ $x_1 \le 8$ $x_2 \le 10$ $x_1 \ge 0, x_2 \ge 0$

MULTI – PERIOD SCHEDULING

- □ More than one period is involved
- The result of each period affects the initial
 - conditions for the next period and therefore the

solution

- We need to define variables to take into account
 - the initial conditions in addition to the decision

variables of the problem

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

- □ We consider a single operator of a system
 - consisting of two water reservoirs with a
 - hydroelectric plant attached to each reservoir
- □ We schedule the two power plant operations over
 - a two-period horizon
- We are interested in the plan that maximizes the

total revenues of the system operator

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

EXAMPLE 5: kAf **RESERVOIR DATA**

parameter	reservoir A	reservoir B
maximum capacity	2,000	1,500
predicted inflow in period 1	200	40
predicted inflow in period 2	130	15
minimum allowable level	1,200	800
level at start of period 1	1,900	850

EXAMPLE 5 : SYSTEM CHARACTERISTICS

EXAMPLE 5 : SYSTEM CHARACTERISTICS

□ Two-tier price for the *MWh* demand in each period

- O up to 50,000 *MWh* can be sold @ 20 \$ */MWh*
- all additional *MWh* are sold @ 14 \$ *IMWh*

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE 5: DECISION VARIABLES

Variable	quantity denoted	units
$x \frac{i}{H}$	energy sold at 20 \$/MWh	MWh
$x \frac{i}{L}$	energy sold at 14 \$/MWh	MWh
w_A^i	plant A water supply for generation	kAf
w_B^i	plant B water supply for generation	kAf
$S \frac{i}{A}$	reservoir A spill	kAf
$S \frac{i}{B}$	reservoir B spill	kAf
$r \frac{i}{A}$	reservoir A end of period i level	kAf
$r \frac{i}{B}$	reservoir B end of period i level	kAf

superscript *i* denotes period i, i = 1, 2

EXAMPLE 5: OBJECTIVE FUNCTION

maximize total revenues from sales

units of Z are in \$

Period 1 constraints

- **O** energy conservation in a lossless system
 - total generation $400 w_A^1 + 200 w_B^1$ (*MWh*)
 - total sales $x_{H}^{1} + x_{L}^{1}$ (*MWh*)
 - losses are negelected and so

$$x_{H}^{1} + x_{L}^{1} = 400 w_{A}^{1} + 200 w_{B}^{1}$$

• Maximum available capacity limits $w_A^1 \leq 150$ $w_B^1 \leq 87.5$

O reservoir conservation of flow relations

• reservoir A:

O limitations on reservoir variables

• reservoir A:

$$1,200 \le r_A^1 \le 2,000$$
 (kAf)

• reservoir *B*:

 $800 \le r_B^1 \le 1,500$ (kAf)

O sales constraint

$$x_{H}^{1} \leq 50,000$$
 (kAf)

Period 2 constraints

- **O** energy conservation in a lossless system
 - total generation $400 w_A^2 + 200 w_B^2$ (*MWh*)
 - total sales $x_H^2 + x_L^2$ (*MWh*)
 - losses are neglected and so

$$x_{H}^{2} + x_{L}^{2} = 400 w_{A}^{2} + 200 w_{B}^{2}$$

> maximum available capacity limits

$$w_{A}^{2} \leq 150$$

$$w_{B}^{2} \leq 87.5$$

O reservoir conservation of flow relations

• reservoir *A*:

- **O** limitations on reservoir variables
 - reservoir A:

$$1,200 \le r_A^2 \le 2,000$$
 (kAf)

• reservoir *B*:

$$800 \le r_B^2 \le 1,500$$
 (kAf)

O sales constraint

$$x_{H}^{2} \leq 50,000$$
 (kAf)

EXAMPLE 5: PROBLEM STATEMENT

□ 16 decision variables:

$$x_{H}^{i}, x_{L}^{i}, w_{A}^{i}, w_{B}^{i}, s_{A}^{i}, s_{B}^{i}, r_{A}^{i}, r_{B}^{i}, i = 1, 2$$

□ Objective function:

max
$$Z = 20(x_H^1 + x_H^2) + 14(x_L^1 + x_L^2)$$

Constraints:

O 20 constraints for the periods 1 and 2

O non-negativity constraints on all variables

EXAMPLE 6 : DISHWASHER AND WASHING MACHINE PROBLEM

- □ The *Appliance Co.* manufactures dishwashers and washing machines
- □ The sales targets for next four quarters are:

mu o das ot	naniabla	quarter t									
product	variable	1	2	3	4						
dishwasher	\boldsymbol{D}_t	2,000	1,300	3,000	1,000						
washing machine	W _t	1,200	1,500	1,000	1,400						

EXAMPLE 6: QUARTERLY COST COMPONENTS

cost comp	oonent	parameter	quarter t costs (\$/unit)					
			1 2 3					
manufacturing	dishwasher	c _t	125	130	125	126		
(\$/unit)	washing machine	v _t	90	100	95	95		
storage	dishwasher	j _t	5.0	4.5	4.5	4.0		
(\$/unit)	washing machine	k _t	4.3	3.8	3.8	3.3		
hourly labor	(\$ /hour)	<i>p</i> _t	6.0 6.0 6.8 6.					

- **Each dishwasher (washing machine) requires 1.5**
 - (2) hours of labor
- □ The labor hours in each quarter cannot grow or
 - decrease by more than 10 %; there are 5,000 h of
 - labor in the quarter preceding the first quarter
- □ At the start of the first quarter, there are 750 dish-

washers and 50 washing machines in storage

EXAMPLE 6 : THE PROBLEM

How to schedule the production in each of the

four quarters so as to minimize the costs while

meeting the sales targets?

EXAMPLE 6: QUARTER t DECISION VARIABLES

symbol	variable						
\boldsymbol{d}_{t}	number of dishwashers produced						
w _t	number of washing machines produced						
r _t	final inventory of dishwashers						
S _t	final inventory of washing machines						
\boldsymbol{h}_{t}	available labor hours during Q_t						
t = 1, 2, 3, 4							

EXAMPLE 6: OBJECTIVE FUNCTION

minimize the *total* costs for the four quarters

Quarterly flow balance relations:

Quarterly labor constraints

$$\begin{cases} 1.5 d_{t} + 2 w_{t} - h_{t} \leq 0 \\ t = 1, 2, 3, 4 \\ 0.9 h_{t-1} \leq h_{t} \leq 1.1 h_{t-1} \end{cases}$$

$$h_{\theta} = 5,000$$

EXAMPLE 6: PROBLEM STATEMENT

d_1	<i>w</i> ₁	<i>r</i> ₁	<i>s</i> ₁	h_1	d_2	<i>w</i> ₂	<i>r</i> ₂	<i>s</i> ₂	h_2	<i>d</i> ₃	<i>w</i> ₃	<i>r</i> ₃	S 3	h_3	<i>d</i> ₄	W ₄	<i>r</i> ₄	<i>s</i> ₄	h_4	
1	-	-1	-	- 1																= 1250
	1		-1																	= 1150
1.5	2			-1																≤ 0
				1																≥ 4500
				1																\leq 5500
		1			1		-1													= 1300
			1			1		-1												= 1500
					1.5	2			-1											≤ 0
				-0.9					1											≥ 0
				-1.1					1											≤ 0
							1			1		-1								= 3000
								1			1		-1							= 1000
										1.5	2			-1						≤ 0
									-0.9					1						≥ 0
									-1.1					1						≤ 0
												1			1		-1			= 1000
													1			1		-1		= 1400
															1.5	2			-1	≤ 0
														-0.9					1	≥ 0
														-1.1					1	≤ 0
125	90	5.0	4.3	6.0	130	100	4.5	3.8	6.0	125	95	4.5	3.8	6.8	126	95	4.0	3.3	6.8	minimize

LINEAR PROGRAMMING PROBLEM

 $max(min) \quad Z = c_1 x_1 + \dots + c_n x_n$

s.t.

 $+ \dots + a_{1n} x_n = b_1$ $a_{11}x_1 + a_{12}x_2$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ $x_1 \geq \theta, x_2 \geq \theta, \dots, x_n \geq \theta$ $b_1 \geq 0, b_2 \geq 0, \dots, b_m \geq 0$

STANDARD FORM OF *LP* (*SFLP*)

CONVERSION OF *LP* **INTO** *SFLP*

- □ An inequality may be converted into an equality by defining an additional *nonnegative slack* variable $x_{slack} \ge 0$
 - replace the given *inequality* $\leq b$ by *inequality* + $x_{slack} = b$
 - **O** replace the given *inequality* $\geq b$ by

inequality
$$-x_{slack} = b$$

CONVERSION OF *LP* **INTO** *SFLP*

- □ An unsigned variable x_u is one whose sign is *not* specified
- $\Box x_u$ may be converted into two signed variables x_+

and x_{-} with

$$x_{+} = \begin{cases} x_{u} & x_{u} \ge 0 \\ 0 & x_{u} < 0 \end{cases} \qquad x_{-} = \begin{cases} 0 & x_{u} \ge 0 \\ -x_{u} & x_{u} < 0 \end{cases}$$

so that x_u is replaced by

$$x_{u} = x_{+} - x_{-}$$

SFLP CHARACTERISTICS

 $\Box \underline{x}$ is feasible if and only if $\underline{x} \ge \underline{\theta}$ and $\underline{A}\underline{x} = b$

- $\Box S = \{ \underline{x} \mid \underline{A} \underline{x} = \underline{b}, \underline{x} \ge \underline{0} \} \text{ is the feasible region}$
- $\Box S = \emptyset \Rightarrow LP \text{ is infeasible}$
- $\Box \underline{x}^* \text{ is optimal} \Rightarrow \underline{c}^T \underline{x}^* \ge \underline{c}^T \underline{x}, \underline{x} \in S$

 $\Box \underline{x}^*$ may be unique, or may have multiple values

$\Box \underline{x}^*$ may be unbounded