ECE 307 – Techniques for Engineering Decisions

16. Forward Contracts

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana–Champaign

RISK

□ There are many definitions of risk; we use the

conceptual definition from Webster's dictionary

that risk is the possibility of suffering loss

People measure risk with a wide variety of

specific metrics

□ A rational market player aims to minimize the

risks faced

RISK

□ Market players use specific *financial tools* to keep

their risks below a specified threshold

□ Such actions constitute *risk management* and are

carried out with financial instruments called *risk*

management tools

□ *Financial derivatives* are some of the most widely-

used risk management tools in financial markets

FINANCIAL DERIVATIVES

- Basic definition: a derivative is a financial tool whose value depends on the value of other, more basic underlying variables
- □ The basic derivatives we examine are
 - **O** forward contracts
 - **O** future contracts
 - **O** options
 - puts
 - calls

- A farmer in Illinois and a restaurant in Wisconsin enter into a contract on January 1, 2015, under which the farmer agrees to sell 1 *ton* of flour for \$400 to the restaurant on September 1, 2015 The contract involves two parties • The farmer is the *issuer* of the contract and holds a short position
 - the restaurant is the *holder* of the contract and has a *long position*

The contract is signed on January 1 for the actual sale that occurrs on September 1 and • we call January 1 the *initial time* of the contract and denote it by $t = \theta$, the origin of the time line; • we call September 1 the *maturity* of the contract and denote it by t = Tlife period of the contract

initial time

maturity

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign; All Rights Reserved.

- □ This contract is on the trading of a single
 - specified commodity the flour; we call the 1 ton
 - of flour the underlying asset
- □ The contract provides the holder with
 - The delivery of the underlying asset at *T*
 - The fixed price *K* for the asset the so–called
 - delivery price

- In the absence of a forward contract, the restaurant needs to buy the flour from the spot market at an *uncertain price* to meet its needs; this price can be high so that the restaurant bears *price risks*
- With the forward contract, the price is fixed and known and, therefore, the holder is protected from price risks
- This forward contract is a *physical contract* since the actual delivery of the asset is involved

□ Next, we assume the existence of a spot market price s_{T} for flour at time T so that one can buy or sell the flour at that *spot price* on the September 1 date □ The *flour forward contract* may also be signed as a *purely financial contract* with the flour commodity as the underlying asset, September 1, 2015 as the maturity time T and the specification of the set of following payments:

 \bigcirc if $s_{\tau} > K$, the issuer reimburses the holder the difference $s_{\tau} - K$ to purchase the flour at s_{τ} \bigcirc if $s_{\tau} < K$, the holder must pay to the issuer in the amount of $K - s_{T}$ and buys flour at s_{T} These specified payments constitute the payoffs of the financial contract **Thus, the** *net price* to the holder is the *delivery price* K and is independent of the market spot price s_T ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign; All Rights Reserved.

- □ Since the issuer can sell the flour in the spot
 - market, its net price also equals K
- Therefore, this purely financial contract provides precisely the same function as the *physical contract* to both the issuer and the holder but involves no actual delivery
- **Typically, many forwards are purely financial**

contracts that do not involve *physical deliverability*

FORWARD CONTRACTS

- A forward contract is a binding agreement to buy or sell an *asset* at the designated future time at the specified price
- An asset is a general term for any good, service or commodity
- The buyer holder is said to hold a *long position* and the seller – issuer – holds a *short position*
- □ The specified price is called the *delivery price*

FORWARD CONTRACTS

- □ A forward contract is *settled at maturity* the designated future time at which the purchase/sale is consummated **The** short position delivers the asset to the long position in return for the cash payment in the amount of the delivery price times the contract amount
- □ The value of the forward contract is a function of

the *market price* of the asset and its *maturity*

FORWARD VALUE AND PRICE

 \Box The value of a forward contract is θ for both the

short and the long positions at the time the contract

is signed; thereafter, its value may be positive, θ

or negative, depending on market conditions

FORWARD VALUE AND PRICE

□ The *forward price* of a forward contract is the *delivery price* that makes the forward contract have θ value at the time the contract is signed **By definition, the** *forward price* **equals the** *delivery price* at the time the contract is signed; thereafter, the *delivery price K* remains fixed while the *forward* price may change as a function of the market price and the *maturity* of the contract

THE LONG POSITION FORWARD CONTRACT PAYOFF

THE SHORT POSITION FORWARD CONTRACT PAYOFF

EXAMPLE: FOREIGN EXCHANGE

May 8, 1995 spot and forward foreign exchange for *British £* and *US \$*

foreign exchange	price in US \$
spot	1.6080
30 – day forward	1.6076
90 – day forward	1.6056
180 – day forward	1.6018

EXAMPLE: FOREIGN EXCHANGE

- Investor signs a 90-day contract for £ 1,000,000 on May 8, 1995
- Investor pays \$ 1,605,600 in 90 days and receives £ 1,000,000
- **Consider two hypothetical cases:**

case	S 90	investor payoff ($s_{90} - K$) in \$
1	1.6500	1,650,000 - 1,605,600 = 44,400
2	1.5500	1,550,000 - 1,605,600 = -55,600

□ The investor *payoff* represents the investor's total gains $(s_T - K > \theta)$ or total losses $(s_T - K < \theta)$

FUTURES CONTRACTS

A *futures contract* **is a** *standardized forward contract* that is, typically, traded on an exchange; the exchange provides a mechanism that guarantees the contract is honored by the two parties □ A key aspect in which a futures contract differs from a forward contract is that a precise delivery date is not specified; typically, the futures contract specifies the delivery month

EXAMPLE: WHEAT FUTURES CONTRACT

- □ Traded on the Chicago Board of Trade (CBT)
- □ Size: 5,000 bushels
- **Delivery months: March, May, July, September,**
 - and December
- □ Maturity: up to 18 months in the future
- **Quality: grades of wheat specified by** *CBT*
- **Delivery locations: specified by** *CBT*

FORWARD vs. FUTURES CONTRACTS

forward contract	futures contract
customized	standardized
private bilateral agreements	publicly traded on an exchange
the specified delivery date	range of delivery dates
settled at maturity (contract end)	settled daily
long position takes delivery; short position gets cash settlement	typically contracts are closed out prior to maturity and do not involve delivery

FINANCIAL DERIVATIVES : FORMAL DEFINITION

□ A *financial derivative* is a financial instrument

that derives its values from a *related* or *underlying*

asset

□ Financial derivative attributes are

- the underlying asset S
- the *maturity time* T

• the payoff function $f^{\mathcal{D}}(\bullet)$

POSITIONS AND MATURITY TIME

Two parties are involved in a financial derivative • The issuer: *short position* • the holder: *long position* **The** *maturity* is the derivative expiration time T The derivative may be exercised at O anytime *t* ∈ [0,T] for *American* derivatives \bigcirc only at t = T for *European*-type derivatives □ We focus on the use of *European* derivatives: for example, in electricity T is chosen to be the time the energy is needed

THE UNDERLYING ASSETS AND ASSET MARKETS

□ The derivative is written on the price movement of

a traded underlying asset S

□ The *underlying asset* may be any good, service or

variable whose value is well defined, such as a

stock, a bond, a commodity, currency, or a

financial contract

THE UNDERLYING ASSETS AND ASSET MARKETS

- We assume the existence of spot markets for the underlying asset at all times during the contract life; at any time *t*, a single spot price s_t exists for the particular asset S
 Short selling is allowed in the asset markets, i.e.,
 - the investor may borrow an asset from a bank and
 - sell it, with the explicit obligation to purchase the
 - asset at a later time to return it to the bank

PAYOFF FUNCTION OF THE DERIVATIVES

□ Each derivative specifies a payment of the *payoff*

from the issuer to the holder; the value of the

payoff is expressed by the function $f^{\mathscr{D}}(\cdot)$

□ The *payoff* is a function of the *underlying asset* spot

price; for European derivatives, it is simply a

function of s_T

PAYOFF EXAMPLE: THE FLOUR CONTRACT

RIGHTS AND OBLIGATIONS

- In the forward flour contract example, the contract must be exercised at time *T*: the holder of the contract must buy the flour from the issuer who must deliver it at the time *T* The *payoff* of the forward is either nonnegative or
 - negative, so that *two-sided* payments may exist
- Forward contracts impose *obligations* on both the issuer and the holder

RIGHTS AND OBLIGATIONS

There exist other types of derivatives, for which, the holder has the option to choose whether or not to exercise the contract • The holder has the *right* but not the *obligation* to exercise the contract • The issuer has the *obligation* to perform as the contract dictates

□ Such derivatives are called *options*

OPTION CONTRACTS

- An option is a financial derivative that provides the holder the *right* but not the *obligation* to buy or sell the underlying asset at maturity at the specified strike price
- Types of options
 - *call* option *C* : rights to buy
 - \bigcirc *put* option \mathscr{P} : rights to sell
 - **O** combinations of *call* and *put* options at

various strike prices

□ A generation company *G* issues to a broker *B* a

call option *C*; the option provides *B* the right to

buy 1 MWh electricity at time T at 20 \$/MWh

□ Attributes of the electricity *call* option

O the *underlying asset S* is the 1 *MWh* electricity

O the *maturity* is the time *T*

• O the *payoff* function is $f^{C}(s_{T})$ with K = 20 \$/MWh

□ The contractual aspects of this option are

- at the time *T*, broker *B* has the *right* but not the *obligation* to buy the 1 *MWh* from the generator *G*
- G has the *obligation* to provide the energy if
 requested by *B* at the *delivery price* of
 K = 20 *\$/MWh*
- the negotiated *strike price* 20 *\$/MWh* is totally independent of the *spot price s*_T at time *T*

□ We assume there is 1 *MWh* need at time *T* so that **B** needs to buy 1 MWh to meet its demand • We assume B is rational so that it minimizes the costs to meet its demand $O_{s_T} > 20$: B exercises the option and buys the 1 MWh from G at the fixed price \$ 20 $O_{T} \leq 20$: B discards the option and buys the 1 MWh from the spot market for the spot energy price s_T

The costs for *B* to purchase the 1 *MWh* is a function of s_T

The *call* option protects the holder *B* from

exposure to any spot price above its *strike price*

In financial markets, typically, the option does not involve the physical delivery of the underlying asset; instead, the following payoff is specified **O** if $s_T > 20$: *G* pays *B* the price difference $s_T - 20$ **O** if $s_T < 20$: no payment takes place This payoff function provides precisely the same outcomes for G and B financially as if the electricity were physically delivered

CALL OPTION PAYOFF DIAGRAM

$$f^{\mathcal{C}}(s_{T}) = max\{\theta, s_{T} - K\}$$

long position

short position

EUROPEAN CALL OPTION PAYOFF

nogition	payoff at maturity		
position	functional form	<i>plot</i>	
long	max{(s _T – K), 0}	foxad K S _T	
short	min{(K - s _T), 0}	for K ST	

PUT OPTIONS

□ A *put* option gives the holder the *right* to sell the

underlying asset at the specified *strike price*

Given Set 5 For a *put* option \mathscr{P} with the underlying asset \mathcal{S} ,

strike price K and maturity T, the payoff to the holder

is given by

$$f^{\mathcal{P}}(s_T) = max \left\{ \theta, K - s_T \right\}$$

PUT OPTION PAYOFF FUNCTION

long position

short position

40

EUROPEAN PUT OPTION PAYOFF

	payoff at maturity		
position	functional form	plot	
long	max{(K – s _T), 0}	forind K S _T	
short	min{(s _T – K), 0}	for the state of t	

EUROPEAN OPTION PAYOFF

		payoff at maturity	
option type position	functional form	plot	
11	long	$max\{(s_T-K), \theta\}$	payoff K S _T
call	short	$min\{(K - s_T), 0\}$	payoff K S _T
	long	$max\{(K - s_T), 0\}$	payoff K S _T
put	short	min{(s _T – K), 0}	payoff K S _T

THE OPTION PREMIUM

- By definition, the *payoff* to the holder of an option contract is nonnegative, thereby providing the protection or hedge against the uncertain *spot market prices*
- In return for such protection, the holder pays a premium to the issuer
- **The** *premium* is the *price* $\rho_{\theta}^{\mathcal{D}}$ of the option contract derivative \mathcal{D} at $t = \theta$
- $\square \ \rho_{\theta}^{\mathcal{D}} > \theta \ \text{for every option } \mathcal{D}$

DERIVATIVE *PROFITS AND LOSSES*

The *profits and losses* (*P&L*) for a derivative *D*, denoted by π^D, are defined as the net cash flow into a position – *long* or *short* – during the life [0, T] of the derivative

DERIVATIVE *PROFITS AND LOSSES*

Given Series 1.1 For derivative \mathscr{D} with *payoff* $f^{\mathscr{D}}(s_T)$ and *premium*

 $\rho_{\theta}^{\mathcal{D}}$, the *P&L* are defined as

O long position: $\pi_{+}^{\mathcal{D}} = f^{\mathcal{D}}(s_{T}) - \rho_{\theta}^{\mathcal{D}}$

O short position: $\pi_{-}^{\mathcal{D}} = -f^{\mathcal{D}}(s_{T}) + \rho_{\theta}^{\mathcal{D}}$

□ Note that by definition

$$\pi_{+}^{\mathcal{D}} = -\pi_{-}^{\mathcal{D}} \qquad \forall \mathcal{D}$$

CALL OPTION PROFITS AND LOSSES

PUT OPTION PROFITS AND LOSSES

HEDGING

□ A *hedger* is a trader interested to reduce the risk he faces; a *hedger* uses financial derivatives to reduce faced exposure to movements in price We revisit the currency exchange example: an investor needs to make £ 1,000,000 payment in 180 days and so is faced with significant foreign exchange risks in the volatile currency markets since the investor pays in US \$

EXAMPLE : FOREIGN EXCHANGE

May 8, 1995 spot and forward foreign

exchange for British £ and US \$

spot	1.6080
30 – day forward	1.6076
90 – day forward	1.6018
180 – day forward	1.6056

HEDGING STRATEGY

□ Investor signs a forward contract to buy in 180

days £ 1,000,000 for \$ 1,605,600; this hedge

- **O** requires no initial payments
- **O** provides certainty for the exchange rate
- **O** need not ensure better outcomes

case	rate (\$/£)	<i>investor's gains/losses</i> (\$)
1	1.7000	94,400
2	1.5000	- 105,600

HEDGING STRATEGY

- Investor buys a *call* option to acquire £ 1,000,000 at the exchange rate of 1.6000; this hedge
 - requires an initial outlay of cash for the *call* option premiums
 - provides protection to the investor against adverse exchange rate movements and benefits from favorable movements

case	exchange rate	investor's action
1	≥ 1.6	exercise option
2	< 1.6	buy £ in market

USING FUTURES FOR HEDGING

An entity that sells an asset at some given future time can hedge by taking a *short futures position*; this is a *short hedge*

asset price asset price increases increases increases loss on the short futures position asset sale loss on asset sale accreases gain on the short futures position

USING FUTURES FOR HEDGING

An entity that wishes to buy an asset at some future time can hedge by taking a *long futures position*; this is a *long hedge*

USING FUTURES FOR HEDGING

□ Futures hedging does not necessarily improve the

overall financial outcome; in fact, on the average

the outcome is worse 50 % of the time

□ Futures hedging, however, reduces the risk since

it provides price certainty

EXAMPLE : *SHORT HEDGE*

- We consider a generator whose plan is the sale of its 1 *MWh* energy production at an hour *T* at a future time
- We assume the production costs for the 1 *MWh* energy are at 20 \$ / *MWh*
- We assume the energy spot price s_T at hour T has the following discrete distribution

 $s_{T} = \begin{cases} 18 \ \$ / MWh & with probability \ 0.5 \\ 26 \ \$ / MWh & with probability \ 0.5 \end{cases}$

If the generator sells its energy directly in the spot market, its profits are

$$\pi_{T} = \begin{cases} -2 \ \$ & \text{with probability 0.5} \\ 6 \ \$ & \text{with probability 0.5} \end{cases}$$

The generator suffers a loss in the case the spot price is 18 \$/MWh since his marginal costs are 20 \$/MWh

The generator may protect himself from such a loss by taking a *short futures position*

□ If the generator sells a *futures* contract A on 1 MWh electricity with the maturity T and the delivery price K = 22 \$/MWh, the generator receives the net payoff at time T of

$$f^{\mathcal{A}}(s_{T}) = -(s_{T} - K) = \begin{cases} 4 \ \$ & \text{if } s_{T} = 18 \ \$ / MWh \\ -4 \ \$ & \text{if } s_{T} = 26 \ \$ / MWh \end{cases}$$

□ The generator's net profits then become

$$\pi_{T}^{net} = \pi_{T} + f^{\mathcal{A}}(s_{T}) = \begin{cases} 2\$ & \text{with probability } 0.5\\ 2\$ & \text{with probability } 0.5 \end{cases}$$

EXAMPLE : *SHORT HEDGE*

□ So, as the holder of the *short futures position*, the

generator's net profits become independent of the

spot price; the generator gains in either case

□ In this way, we say the generator's position is

fully hedged

□ We consider a 1 *MW* load planning its energy

purchases for the hour *T* at some future time

U We assume the energy spot price s_T at hour *T* has

the following distribution

 $s_{T} = \begin{cases} 18 \ \$ / MWh & with probability 0.5 \\ 26 \ \$ / MWh & with probability 0.5 \end{cases}$

□ If the load purchases its energy directly in the

spot market, its costs are

$$c_{T} = \begin{cases} 18 \ \$ & \text{with probability 0.5} \\ 26 \ \$ & \text{with probability 0.5} \end{cases}$$

□ The load faces uncertainty in the supply costs

□ The load may get price certainty by taking a *long*

futures position

□ If the load holds a *long futures position* A on 1 MWh energy with the *maturity* T and the *delivery price* K = 22 \$/*MWh* at *T*, the load receives the net *payoff* $f^{\mathcal{A}}(s_{T}) = s_{T} - K = \begin{cases} -4\$ & \text{if } s_{T} = 18\$ / MWh \\ 4\$ & \text{if } s_{T} = 26\$ / MWh \end{cases}$ □ The load's net costs then become

$$c_{T}^{net} = c_{T} - f^{\mathcal{A}}(s_{T}) = \begin{cases} 22 \$ & \text{with probability 0.5} \\ 22 \$ & \text{with probability 0.5} \end{cases}$$

□ In other words, the load's *long futures position*

makes the net costs to be independent of the

spot prices; the load gets its price certainty

□ In this way, we say the load's position is *fully*

hedged

SPECULATION

- A speculator takes a position in a market by betting that either that a price increases or a price decreases
- A speculator may purchase the asset on the spot market and rely on
 - **O** future spot markets
 - use *forward contracts* with a higher level of leverage
 - **O use** *options* for additional leverage

SPECULATION

□ In the *sterling exchange* example, the investor can speculate and take a long position in a 180-day forward contract on sterling: suppose the speculator buys a 180-day forward contract at conversion rate of 1.6056 and the exchange rate rises to 1.7000, then he makes a profit of \$ 94,440

EXAMPLE : SPECULATION USING OPTIONS

- □ A stock price is *§* 43 and an investor is betting
 - that the price will rise and buys *call* options with a
 - strike price of \$48 at \$1 per option
- □ If the price fails to go above *\$* 48 during the life of the option, the speculator loses *\$* 1 per option
- □ If the price rises to *\$* 55, the speculator realizes
 - net profits of \$6 per option a 600% gain on the

original premium investment

ARBITRAGE

- Arbitrageurs lock in *riskless profits* by undertaking transactions in two or more markets
- As an example we consider a situation where a stock is traded on stock exchanges both in NY and London: suppose stock price is \$ 172 in NY and £ 100 in London when the exchange rate is \$ 1.750 per £:
 - arbitrageur buys 1,000 shares in *NY* and immediately sells them in *London* to realize
 - risk-free profits of \$ 3,000

ARBITRAGE

O such arbitrage opportunities do not last very

long because as arbitrageurs buy more stocks

in *NY*, the law of supply and demand causes

the price to rise and, similarly, as they sell

more stock in *London*, the £ price will decrease

so that in a short time the prices become the

same at the current exchange rate