# ECE 307 - Techniques for Engineering Decisions 

15. Value of Information

## George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

## VALUE OF INFORMATION

While we cannot do away with uncertainty, there is always a natural desire to attempt to reduce the uncertainty about future outcomes

The quest for reduction in uncertainty about future outcomes may provide us alternatives that strongly increase the chances for a good outcome
$\square$ We focus this lecture on the principles behind information valuation


## NOTION OF PERFECT INFORMATION

We say that an expert's information is perfect if it is always correct; we may view an expert as a clairvoyant, whose future forecasts are correct

We may quantify the value of information in a decision problem with the quantification of the

## NOTION OF PERFECT INFORMATION

We consider the role of perfect information in the simple investment example
$\square$ In this decision problem, the optimal policy is to invest in high-risk stock since it has the highest returns on an expected basis
$\square$ Suppose an expert predicts that the market goes up: this implies the investor still chooses the high-risk stock investment and consequently the perfect information of the expert appears to be of no added value

## NOTION OF PERFECT INFORMATION

$\square$ On the other hand, suppose the expert predicts a market decrease or a flat market: under this information, the investor's choice is the savings account and the perfect information brings value as it leads to a changed outcome with improved results over those in the case without the expert

Under worst case conditions, regardless of the information, we make the identicale decision as

## NOTION OF PERFECT INFORMATION

without the information and consequently
$E V I=0$; the interpretation, then, is that we are equally well off without the expert

Cases in which we have information and we change to a different optimal decision lead to $E V I>0$, since we make a decision that improves the outcome using the available information

## EVI ASSESSMENT

It follows that the value of information is always nonnegative, $E V I \geq 0$

Indeed, perfect information removes all uncertainty, and the expected value of perfect information EVPI provides an upper bound for $E V I$

$$
E V I \leq E V P I
$$

## A SIMPLE INVESTMENT EXAMPLE: COMPUTATION OF EVPI

$\square$ Absent any expert information, a value-maximizing investor selects the high-risk stock option
$\square$ The introduction of an expert or clairvoyant brings in perfect information since there is perfect a priori knowledge of how the market will fare before the investor makes his decision and the investor's decision is based on this information
© 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

## COMPUTATION OF EVPI

We use a decision tree approach to compute EVPI and reverse the decision and uncertainty order: we view the value of information in an a priori sense and define
$E V P I=E\{$ decision with perfect information $\}-$ $E\{d e c i s i o n ~ a b s e n t ~ a d d i t i o n a l ~ i n f o r m a t i o n\}$


## COMPUTATION OF EVPI

For the investment problem,

$$
E V P I=1,000-580=420
$$

We may view EVPI to represent the bound on the amount that the investor is willing to pay an expert for the perfect information resulting in the improved outcome

## EXPECTED VALUE OF IMPERFECT INFORMATION

$\square$ In practice, however, we cannot obtain perfect information; rather, the information is imperfect since there exist no clairvoyants
$\square$ We evaluate the expected value of imperfect information, EVII
For example, we engage an expert economist to forecast the future stock market trends; the economist's forecasts constitute imperfect information: the track record based on past performance is tabulated below

| EXPECTED VALUE OF IMPERFECT INFORMATION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| conditioning event |  |  |  |  |
|  |  |  |  |  |
| economist's prediction | actual market state |  |  |  |
|  | up | flat | down |  |
| "up" | $0.8$ | 0.15 |  |  |
| "flat" |  |  | 0.2 |  |
| "down" |  |  |  |  |

## EVII ASSESSMENT

$\square$ We use the decision tree approach to compute the
EVII and so need to evaluate the reverse conditional probabilities via the application of Bayes' theorem
$\square$ Under imperfect information, we define the r.v.
$\underset{\sim}{M}=\underset{\text { performance }}{\text { market }}=\left\{\begin{array}{cll}\text { up } & \text { with probability } 0.5 \\ \text { flat } & \text { with probability } & 0.3 \\ \text { down } & \text { with probability } & 0.2\end{array}\right.$

## EVII ASSESSMENT

and the forecast r.v.

$$
\underset{\sim}{F}=\left\{\begin{array}{c}
" u p " \\
\text { "flat" } \\
\text { "down" }
\end{array}\right.
$$

$\square$ We have no knowledge of the probabilities of the forecast r.v.; all we know is the prior probabilities of $\underset{\sim}{F}$ given $\underset{\sim}{M}$

## EVII COMPUTATION: INCOMPLETE DECISION TREE



|  | CONDITIONAL PROBABILITIES |
| :---: | :---: |
|  | $\boldsymbol{P}\{\underset{\sim}{\boldsymbol{F}}=" u p \prime \mid \underset{\sim}{\boldsymbol{M}}=\text { down }\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{M}}=\text { do }$ |
|  |  |

In this way, we flip the conditional probabilities
© 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.


| POSTERIOR PROBABILITIES |  |  |  |
| :---: | :---: | :---: | :---: |
| economist's prediction | posterior probability for: |  |  |
|  | market up | market flat | market down |
| "up" | 24 | 0.0928 | 0.082 |
| "flat" | 0.1667 | 0.7000 | 0.1333 |
| "down" | 0.2325 | 0.2093 | 0.558 |

## EVII COMPUTATION

We use conditional probabilities in the table to

## build the posterior probabilities

For example

$$
P\{\text { market up } \mid \text { economist predicts"up" }\}=0.8247
$$

We then compute

$$
\begin{aligned}
& P\{\underset{\sim}{\boldsymbol{F}}=\text { "ир" }\}=0.485 \\
& \boldsymbol{P}\{\underset{\sim}{\boldsymbol{F}}=\text { "flat" }\}=\mathbf{0 . 3 0 0}
\end{aligned}
$$

## EXPECTED VALUE OF IMPERFECT INFORMATION



## EVII COMPUTATION

$\square$ The expected mean value for the decision made with the economist information is

$$
\left.E M V\right|_{\text {economist }}=1,164(0.485)+500(0.515)=822
$$

$\square$ The expected mean value without information is 580

Consequently,

$$
E V I I=822-580=242
$$

$\square$ This value represents the bound on the worth of the economist's forecast

## EXAMPLE OF VALUE OF INFORMATION

## We consider the following decision tree


with the events at $E$ and $F$ as independent
We perform a number of valuations of EVPI for
this simple decision problem
© 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.



