ECE 307 – Techniques for Engineering Decisions

14. Simulation

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana–Champaign

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

SIMULATION

- Simulation provides a *systematic* approach to deal with uncertainty by "*flipping a coin*" or "*rolling a die*" to represent the outcome or realization of each uncertain event
- In many real world situations, simulation may be the *only viable means* to quantitatively deal with a problem under uncertainty
- Effective simulation requires implementation of appropriate approximations at many and, sometimes, at possibly every stage of the problem

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

BASIC ALGORITHM

- Step θ : store the distribution $\mathscr{N}(25,000, 5,000)$; determine \overline{k} , the maximum number of draws; set $k = \theta$
- **Step 1**: if $k > \overline{k}$, stop; else set k = k+1
- Step 2 : draw a random sample from the normal distribution \mathcal{N} (25,000, 5,000)
- Step 3 : evaluate the outcomes on both branches; enter each outcome into the data base and return to Step 1 © 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SOFT PRETZEL EXAMPLE				
$F_{\sim} = x \%$	$P\{F = x\}$			
16	0.15			
19	0.35			
25	0.35			
28	0.15			
© 2006 – 2019 George Gross, University of Illi	nois at Urbana-Champaign, All Rights Reserved.			

SOFT PRETZEL EXAMPLE Sales price of a pretzel is \$ 0.50 Variable costs V are represented by a uniformly

distributed *r.v.* in the range [0.08, 0.12] \$/pretzel

 \Box Fixed costs C are also random

□ The contributions to profits are given by

$$\Pi = (\underline{S} \cdot \underline{F}) \cdot (0.5 - \underline{V}) - \underline{C}$$

and may be evaluated via simulation

U We can use simulation to approximate $F_{II}(\cdot)$

^{© 2006 – 2019} George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROCESS 1 DESCRIPTION

Machine in the *process* can fail randomly and the number failures Z_i in year i = 0,1,2 is a *r.v.* with Z_i ~ *Poisson*(m = 4) i = 0,1,2
 Each failure incurs constant costs of \$ 8,000 over the 3-year period
 Total costs are the sum of V_i and 8,000 Z_i

PROCESS 1: SALES FORECAST UNCERTAINTY DATA							
current year $i = 0$		next year $i = 1$		year after next i = 2			
$P\left\{ \underbrace{D}_{0} = d_{0} \right\}$	d ₁	$P\left\{ \sum_{n=1}^{\infty} d_{1} \right\}$	<i>d</i> ₂	$P\left\{ D_{2} = d_{2} \right\}$			
0.2	8,000	0.2	4,000	0.1			
0.6	19,000	0.4	21,000	0.5			
0.2	27,000	0.4	37,000	0.4			
	UNC $rent year = 0$ $P\left\{ D_0 = d_0 \right\}$ 0.2 0.6	UNCERTA rent year ne. = 0 i $P \{ D_0 = d_0 \}$ d_1 0.2 8,000 0.6 19,000	UNCERTAINTY DArent yearnext year $= 0$ $i = 1$ $P \{ D_0 = d_0 \}$ d_1 $P \{ D_1 = d_1 \}$ 0.2 $8,000$ 0.2 0.6 $19,000$ 0.4	UNCERTAINTY DATArent year = 0 next year i = 1year i $P\left\{ D_0 = d_0 \right\}$ d_1 $P\left\{ D_{2,1} = d_1 \right\}$ d_2 0.28,0000.24,0000.619,0000.421,000			

PROCESS 1: SALES FORECAST UNCERTAINTY DATA							
current year $i = 0$		next year $i = 1$		year after next i = 2			
d _o	$P\left\{ D_{\tilde{\nu}_{0}}=d_{0}\right\}$	<i>d</i> ₁	$P\left\{ \sum_{n=1}^{\infty} d_{1} \right\}$	<i>d</i> ₂	$P\left\{ D_{2} = d_{2} \right\}$		
14,000	0.3	12,000	0.36	9,000	0.4		
19,000	0.4	23,000	0.36	26,000	0.1		
24,000	0.3	31,000	0.28	42,000	0.5		
© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.							

NET PROFITS

□ The net profits π_i each year are a function $\pi_i = f\left(D_i, V_i, Z_i\right)$ i = 0, 1, 2□ While for each *process*, the $F_{\pi_i}(\cdot)$ approximation requires the evaluation of all the possible outcomes, both $E\left\{\pi_i\right\}$ and $var\left\{\pi_i\right\}$ may be estimated by simulation by drawing an appropriate number of samples from the underlying distribution

	SIMULATION RESULTS							
C	□ For a 1,000 replications we obtain							
	process j	mean (\$)	standard deviation (\$)	$P\left\{\sum_{i}\Pi^{j} < \theta\right\}$				
	1	91,160	46,970	0.029				
	2	110,150	72,300	0.046				
	© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.							

