ECE 307 - Techniques for Engineering Decisions

14. Simulation

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

SIMULATION

\square Simulation provides a systematic approach to deal with uncertainty by "flipping a coin" or "rolling a die" to represent the outcome or realization of each uncertain event
\square In many real world situations, simulation may be the only viable means to quantitatively deal with a problem under uncertainty
\square Effective simulation requires implementation of appropriate approximations at many and, sometimes, at possibly every stage of the problem

[^0]
SIMULATION EXAMPLE

The problem is concerned with the purchase of fabric by a fashion designer
The two choices offered by textile suppliers are:
supplier 1: fixed price - constant $2 \$ / y d$
supplier 2: variable price dependent on quantity at
$2.10 \$ / y d$ for the first $20,000 \mathrm{yd}$;
$1.90 \$ / y d$ for the next $10,000 \mathrm{yd}$;
$1.70 \$ 1 y d$ for the next $10,000 \mathrm{yd}$;
1.50 \$/yd thereafter

SIMULATION EXAMPLE

The purchaser is uncertain about the demand $\underset{\sim}{D}$
but determines an appropriate model is:

$$
\underset{\sim}{D} \sim \mathcal{N}(25,000 y d, 5,000 y d)
$$

\square The decision may be represented in form of the
following decision branches:

SIMULATION EXAMPLE

Supplier 1 has a simple linear cost function $\underset{\sim}{C}$

Supplier 2 has a more complicated scheme to
evaluate costs: in effect, the range of the demand
and the corresponding probability for $\underset{\sim}{D}$ to be in a
particular segment of the range must be known,
as well as the expected value of $\underset{\sim}{\boldsymbol{D}}$ for each range
© 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SIMULATION EXAMPLE

We simulate the situation in the decision tree by
"drawing multiple samples from the appropriate population"

We systematically tabulate the results and evaluate the required statistics
\square The algorithm for the simulation consists of a few simple steps which are repeated until an appropriatly sized sample is constructed

[^1]
SIMULATION EXAMPLE

\square Application of the algorithm allows the determination of the histogram of the cost figures and then the evaluation of the expected costs For the assumed demand, for supplier 1, we have the straightforward case of

$$
\mu_{C}=E\{\underset{\sim}{C}\}=2 \cdot E\{\underset{\sim}{D}\}=\mathbf{5 0 , 0 0 0}
$$

and

SIMULATION EXAMPLE

$$
\sigma_{C}=10,000
$$

and the use of the algorithm may be bypassed

For the supplier 2, the algorithm is applied for the \bar{k} random draws

The actual simulation is an exercise left to the reader

GENERATION OF RANDOM DRAWS

\square A key issue is the generation of random draws for
which we need a random number generator

There are various random number generator algorithms
\square One intuitive scheme is based on the use of a uniformly distributed r.v. between 0 and 1

GENERATION OF RANDOM DRAWS

$\underset{\sim}{X}=\left\{\begin{array}{l}x \in[0,1] \text { with probability } 1 \\ x \notin[0,1] \text { with probability } 0\end{array}\right.$

GENERATION OF RANDOM DRAWS

We draw a random value of x, say x^{*} and work through the c.d.f. $F_{\underline{Y}}(y)$ to get the value y^{*} of the r.v. $\underset{\sim}{Y}$ with $F_{\underline{V}}\left(y^{*}\right)=x^{*}$

© 2006 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SOFT PRETZEL EXAMPLE

The market size is unknown but we assume that
the market size is a normally distributed r.v. with

$$
\underset{\sim}{S} \sim \mathcal{N}(\underbrace{\mathbf{1 0 0 , 0 0 0}}_{\mu_{\underline{s}}}, \underbrace{\mathbf{1 0 , 0 0 0}}_{\sigma_{\underline{s}}})
$$

We are interested to determine the fraction $\underset{\sim}{F}$ of the market the new company is able to capture

We model the distribution of $\underset{\sim}{F}$ using the discrete distribution tabulated below:

SOFT PRETZEL EXAMPLE	
$\underset{\sim}{F}=x \%$	
16	$P\{\underset{\sim}{F}=x\}$
19	0.15
25	0.35
28	0.35

SOFT PRETZEL EXAMPLE

Sales price of a pretzel is $\$ \mathbf{0 . 5 0}$
\square Variable costs $\underset{\sim}{V}$ are represented by a uniformly distributed $r . v$. in the range $[0.08,0.12] \$ /$ pretzel

Fixed costs $\underset{\sim}{C}$ are also random
\square The contributions to profits are given by

$$
\underset{\sim}{\Pi}=(\underset{\sim}{S} \cdot \underset{\sim}{F}) \cdot(0.5-\underset{\sim}{V})-\underset{\sim}{C}
$$

and may be evaluated via simulation
\square We can use simulation to approximate $F_{\Pi}(\cdot)$

MANUFACTURING CASE STUDY

We focus on the selection of one of two manufac-
turing processes based on net present value (NPV)
using a 3-year horizon - the current year 0 plus
the years 1 and 2 - under a 10% discount rate

The process is used to manufacture a product whose sales price is $\mathbf{8} \$$ unit

PROCESS 1 DESCRIPTION

This process uses the current machinery for
manufacturing

The annual fixed costs are $\$ \mathbf{1 2 , 0 0 0}$
\square The yearly variable costs are represented by the
r.v.

$$
{\underset{\sim}{V}}^{V} \sim \mathcal{N}(4,0.4) \quad i=0,1,2
$$

PROCESS 1 DESCRIPTION

Machine in the process can fail randomly and the
number failures $\underset{\sim}{Z}$ in year $i=0,1,2$ is a r.v. with

$$
\underset{\sim}{Z}{ }_{i} \sim \operatorname{Poisson}(m=4) \quad i=0,1,2
$$

Each failure incurs constant costs of $\$ \mathbf{8 , 0 0 0}$ over
the 3-year period
Total costs are the sum of $\underset{\sim}{V}$ and $8,000 \underset{\sim}{Z}{ }_{i}$

PROCESS 1: SALES FORECAST UNCERTAINTY DATA					
current year$i=0$		$\begin{gathered} \text { next year } \\ i=1 \\ \hline \end{gathered}$		year after next$i=2$	
d_{0}	$\boldsymbol{P}\left\{\underset{\sim}{\underset{\sim}{\sim}}=^{\prime} \boldsymbol{d}_{0}\right\}$	d_{1}	$P\left\{\underset{\sim}{\underset{1}{1}}=_{1}\right\}$	d_{2}	$P\left\{\underset{\sim}{\underset{\sim}{2}}=\boldsymbol{d}_{2}\right\}$
11,000	0.2	8,000	0.2	4,000	0.1
16,000	0.6	19,000	0.4	21,000	0.5
21,000	0.2	27,000	0.4	37,000	0.4

PROCESS 2: DESCRIPTION

\square Process 2 involves an investment of $\$ \mathbf{6 0 , 0 0 0}$ paid in cash to buy the new equipment and doing away with the worthless current machinery; the fixed costs of $\$ 12,000$ per year remain unchanged
\square The yearly variable costs $\underset{\sim}{V}$ are normal r.v.s

$$
{\underset{\sim}{V}}^{V_{i}} \mathcal{N}(\$ 3.50, \$ 1.0) \quad i=0,1,2
$$

The number of machine failures $\underset{\sim}{Z}$ for year

$$
{\underset{\sim}{\sim}}_{i} \sim \operatorname{Poisson}(m=3) \quad i=0,1,2
$$

and the costs per failure are $\mathbf{\$ 6 , 0 0 0}$

PROCESS 1: SALES FORECAST UNCERTAINTY DATA					
current year$i=0$		$\begin{gathered} \text { next year } \\ \quad i=1 \end{gathered}$		year after next$i=2$	
d_{0}	$P\left\{\underset{\sim}{\underset{\sim}{0}}=^{\prime} d_{0}\right\}$	d_{1}	$P\left\{\underset{\sim}{\underset{\sim}{1}}=^{\prime} d_{1}\right\}$	d_{2}	$P\left\{\underset{\sim}{\underset{\sim}{D}}{ }^{\prime}=d_{2}\right\}$
14,000	0.3	12,000	0.36	9,000	0.4
19,000	0.4	23,000	0.36	26,000	0.1
24,000	0.3	31,000	0.28	42,000	0.5

NET PROFITS

The net profits $\underset{\sim}{\pi}$ each year are a function

$$
\underset{\sim}{\pi}=f\left(\underset{\sim}{D},{\underset{\sim}{i}}_{V}^{V}, \underset{\sim}{Z} \underset{i}{ }\right) \quad i=0,1,2
$$

While for each process, the $\boldsymbol{F}_{\pi_{i}}(\cdot)$ approximation requires the evaluation of all the possible outcomes, both $\left.E\{\underset{\sim}{\pi}]_{i}\right\}$ and $\operatorname{var}\{\underset{\sim}{\pi}\}$ may be estimated by simulation by drawing an appropriate number of samples from the underlying distribution

NPV

The NPV of these profits needs to be assessed and expressed in terms of the current year 0 dollars
\square The profits are collected at the end of each year or equivalently, at the beginning of the following year

We use the $d=10 \%$ discount factor to express
the $\left.\operatorname{var}\{\underset{\sim}{\pi}\}_{i}\right\}$ in year 0 (current) dollars squared

NPV

We can evaluate for processes 1 and 2 the profits for each year; we use superscript to denote each specific process

$$
\begin{array}{r}
\text { process 1: } \underset{\sim}{\pi_{i}^{1}}=8 \underset{\sim}{D}-\underset{\sim}{D}{\underset{\sim}{i}}^{V}-8,000 \underset{\sim}{Z} \\
i=12,000 \\
i=0,1,2
\end{array}
$$

process 2: ${\underset{\sim}{r}}_{i}^{2}=8 \underset{\sim}{D}{ }_{i}-\underset{\sim}{D} \underset{\sim}{V}{\underset{\sim}{i}}-6,000 \underset{\sim}{\underset{\sim}{Z}} \underset{i}{ }-12,000$ and we also need to account for the $\$ \mathbf{6 0 , 0 0 0}$ investment in year 0 for process 2

NPV

The NPV evaluation then is stated as the r.v.
and

Simulation is used to evaluate

$$
N P V^{1}=E\left\{\underset{\sim}{\Pi}{ }^{1}\right\} \quad N P V^{2}=E\left\{\underset{\sim}{\Pi}{ }^{2}\right\}
$$

SIMULATION RESULTS

For a 1,000 replications we obtain

process j	mean (\$)	standard deviation (\$)	$P\left\{\sum \Pi_{\sim}^{j}<0\right\}$
1	91,160	46,970	0.029
2	110,150	72,300	0.046

c.d.f.s OF THE TWO PROCESSES

[^0]: © 2006-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

[^1]: BASIC ALGORITHM
 Step 0 : store the distribution $\mathscr{N}(\mathbf{2 5}, \mathbf{0 0 0}, \mathbf{5 , 0 0 0})$; determine $\overline{\boldsymbol{k}}$, the maximum number of draws; set $k=0$
 Step 1: if $k>\bar{k}$, stop; else set $k=k+1$
 Step 2 : draw a random sample from the normal distribution $\mathscr{N}(25,000,5,000)$
 Step 3 : evaluate the outcomes on both branches; enter each outcome into the data base and return to Step 1

