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ECE 307 – Techniques for Engineering 
Decisions
13. Data Uses
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q Use of historical data for the construction of 

probability distributions

q The interpretation of probability information

q Use of estimators

q Application example

FOCUS  OF  DATA  USAGE  TOPIC
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EXAMPLE

q Consider the interpretation of the statement

q We obtain this probability from, say, 20 years of 
June weather data in Champaign, with each day 
classified as either sunny or not sunny

q The 600 June days of data indicate that 318 or 53 %

of these days are classified as sunny
q Given the long–term historical behavior in the 

data, the probability of 0.53 makes sense

  P sunny day in June in Champaign{ } = 0.53
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outage capacity of a generation plant (MW )

USE  OF  HISTOGRAMS
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CONSTRUCTION  OF  THE  c.d.f.

1.0

a

p

x

  P !
X ≤ a{ } = p
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STATISTICAL  PARAMETER  
ESTIMATORS

q An estimator is a r.v. that can be used to estimate 
the value of a parameter of interest

q Consider a r.v. whose statistical parameters we 
wish to estimate

q We consider a set of r.v.s , 
where each      is independent of      ,         , and
each       has the same distribution as     ; we refer 
to this set as a set of n independent, identically 

distributed or i.i.d. r.v.s

  !
X

    !
Xi , i = 1,2 , ... , n{ }

  !
Xi

  !
Xi

  !
X j  i ≠ j

  !
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STATISTICAL  PARAMETER  
ESTIMATORS

q We use the set of n i.i.d. r.v.s to 

construct estimators for the moments of 

q We focus on the estimators for two key 

parameters of     : 

m the mean of 

m the variance of 

    !
Xi , i = 1,2 , ... , n{ }

  !
X

  !
X

  !
X

  !
X
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q The sample mean estimator is the r.v.

q In practice, we obtain an estimate of the mean by 
using the observed realizations of the n r.v.s

STATISTICAL  PARAMETER 
ESTIMATORS 
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q The estimator of the sample variance is given by 
the r.v.

q We obtain an estimate of the variance by using 
the observed realizations of the n r.v.s

STATISTICAL  PARAMETER 
ESTIMATORS 
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X i − E

!
X{ }( ) 2
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STATISTICAL  PARAMETER 
ESTIMATORS

q An equivalent way to think about the computation 

of the estimate is to draw n random samples from 

the sample space of  

q We collect the set of  n random samples                             

of the r.v.     : these are n randomly

drawn values from the sample space of
  

x1 , x 2 , . . ., x n{ }   !
X

  !
X

  !
X
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STATISTICAL  PARAMETER 
ESTIMATORS

q The value      computed with the set of random 

samples provides an estimate of                                      

q The value s 2 computed with the set of random 

samples provides an estimate of 

 x

  µ = E
!
X{ }

   σ  

2 = var
!
X{ }
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EXAMPLE:  TACO  SHELLS

q This application example focuses on taco shells 
and is concerned with the high breakage rate in 
the shipment of most taco shells: typical rate is   
10 – 15 %

q A company with a new shipping container claims 
to have a lower – approximately 5% – breakage rate

q This company�s price is $ 25 for a 500–taco shell 
box  vs. $ 23.75 for a 500–taco shell box of the 
current supplier
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EXAMPLE:  TACO  SHELLS

q A test run using 12 boxes from the new company 

and 18 boxes from the current company is 

performed and used for comparison purposes: we 

randomly pick the elements to construct the set                              

from the sample space of the r.v. to represent

  
x 1 , x 2 , . . ., x 12{ }

  !
X
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EXAMPLE:  TACO  SHELLS

the number of unbroken shells from the new 

company and the elements to construct the set                            

from the sample space of the r.v. to represent 

those of the current company

q We tabulate the data of the useable shells from 

the two suppliers

  y 1 , y 2 , . . ., y 18{ }
  !
Y
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UNBROKEN  TACO  SHELLS

new supplier current supplier

468 467 444 441 450

474 469 449 434 444

474 484 443 427 433

479 470 440 446 441

482 463 439 452 436

478 468 448 442 429

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.    16

EXAMPLE:  TACO  SHELLS

new supplier     
     

$25.00/case

current supplier 
$23.75/case

12 samples of the
number of unbroken       

shells  (x)

18 samples of the
number of unbroken       

shells  (y)

costs per                 

unbroken shell

  
25
x

23.75
y

 
iii

 
iii
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c.d.f.s  CONSTRUCTED  FOR  THE  TWO  
SUPPLIERS

0.1
0.2
0.3
0.4
0.5
0.6
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0.9
1

current supplier

new supplier

441 473

unbroken shells per box
420 430 440 450 460 470 480 490

0
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c.d.f.s  OF  THE  TWO  SUPPLIERS

q Clearly, the new supplier has the higher expected 

number of useable shells per box; the two 

distributions, however, are highly similar

q The mean number of useable shells for the new 

supplier is 473 and so the expected costs per



10

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.    19

c.d.f.s  OF  THE  TWO  SUPPLIERS

useable shell is $0.0529; the minimum (maximum)

number of useable shells is 463(482)

q The mean number of useable shells for the 

current supplier is 441 and so the expected costs 

per useable shell is $0.0539; the minimum 

(maximum) number of useable shells is 429(452)
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REDUCED ORDER REPRESENTATION 
OF THE TEST RUN DATA

new supplier 

$25.00/box

current supplier 
$23.75/box

number of usable shells cost per usable 
shell ($)

462 0.185

472 0.630

485 0.185

427 0.185

442 0.630

452 0.185

0.0541

0.0530

0.0515

0.0556

0.0537

0.0525
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COMMENTS

q We use the observed sample–based c.d.f.s to esti–

mate the mean of each supplier population

q In general for an arbitrary r.v.
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COMMENTS

and so we cannot use the approximation

q This example demonstrates the usefulness of the 

c.d.f.s in applications even when they can only be 

approximated for the limited data available
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