# ECE 307 - Techniques for Engineering Decisions 

13. Data Uses

## George Gross

Department of Electrical and Computer Engineering University of IIlinois at Urbana-Champaign

## FOCUS OF DATA USAGE TOPIC

Use of historical data for the construction of
probability distributions
$\square$ The interpretation of probability information
$\square$ Use of estimators
$\square$ Application example

## EXAMPLE

- Consider the interpretation of the statement $\boldsymbol{P}\{$ sunny day in June in Champaign $\}=\mathbf{0 . 5 3}$
$\square$ We obtain this probability from, say, 20 years of June weather data in Champaign, with each day classified as either sunny or not sunny
$\square$ The 600 June days of data indicate that 318 or $53 \%$ of these days are classified as sunny
$\square$ Given the long-term historical behavior in the data, the probability of 0.53 makes sense




## STATISTICAL PARAMETER ESTIMATORS

An estimator is a r.v. that can be used to estimate the value of a parameter of interest
$\square$ Consider a r.v. $\underset{\sim}{X}$ whose statistical parameters we wish to estimate
$\square$ We consider a set of r.v.s $\{\underset{\sim}{X}, i=1,2, \ldots, n\}$, where each $\underset{\sim}{X}$ is independent of $\underset{\sim}{X}, i \neq j$, and each $\underset{\sim}{X}$ has the same distribution as $\underset{\sim}{X}$; we refer to this set as a set of $\boldsymbol{n}$ independent, identically distributed or i.i.d. r.v.s

## STATISTICAL PARAMETER ESTIMATORS

$\square$ We use the set of $n$ i.i.d. r.v.s $\{\underset{\sim}{X}, i=1,2, \ldots, n\}$ to construct estimators for the moments of $\underset{\sim}{X}$

We focus on the estimators for two key parameters of $\underset{\sim}{X}$ :

O the mean of $\underset{\sim}{X}$
O the variance of $\underset{\sim}{X}$

## STATISTICAL PARAMETER ESTIMATORS

The sample mean estimator is the r.v.

$$
\underset{\sim}{\bar{X}}=\frac{\sum_{i=1}^{n} \underset{\sim}{X}{ }_{i}}{n}
$$

$\square$ In practice, we obtain an estimate of the mean by using the observed realizations of the $n$ r.v.s $\underset{\sim}{X}$ i

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

## STATISTICAL PARAMETER ESTIMATORS

The estimator of the sample variance is given by the r.v.

$$
{\underset{\sim}{S}}^{2}=\frac{\sum_{i=1}^{n}(\underset{\sim}{X} \underset{i}{ }-E\{\underset{\sim}{X}\})^{2}}{n-1}
$$

$\square$ We obtain an estimate of the variance by using the observed realizations of the nr.v.s $\underset{\sim}{X}$

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

## STATISTICAL PARAMETER ESTIMATORS

An equivalent way to think about the computation
of the estimate is to draw $n$ random samples from the sample space of $\underset{\sim}{X}$

We collect the set of $n$ random samples
$\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of the r.v. $\underset{\sim}{X}$ : these are $n$ randomly drawn values from the sample space of $\underset{\sim}{X}$

## STATISTICAL PARAMETER ESTIMATORS

The value $\bar{x}$ computed with the set of random samples provides an estimate of

$$
\mu=E\{\underset{\sim}{x}\}
$$

The value $s^{2}$ computed with the set of random samples provides an estimate of

$$
\sigma^{2}=\operatorname{var}\{\underset{\sim}{X}\}
$$

## EXAMPLE: TACO SHELLS

This application example focuses on taco shells and is concerned with the high breakage rate in the shipment of most taco shells: typical rate is 10-15 \%
$\square$ A company with a new shipping container claims to have a lower - approximately $5 \%$ - breakage rate This company's price is $\$ \mathbf{2 5}$ for a 500-taco shell box vs. $\$ \mathbf{2 3 . 7 5}$ for a $\mathbf{5 0 0}$-taco shell box of the current supplier

## EXAMPLE: TACO SHELLS

$\square$ A test run using 12 boxes from the new company and 18 boxes from the current company is performed and used for comparison purposes: we randomly pick the elements to construct the set

$$
\left\{x_{1}, x_{2}, \ldots, x_{12}\right\}
$$

from the sample space of the r.v. $\underset{\sim}{X}$ to represent

## EXAMPLE: TACO SHELLS

the number of unbroken shells from the new company and the elements to construct the set

$$
\left\{y_{1}, y_{2}, \ldots, y_{18}\right\}
$$

from the sample space of the r.v. $\underset{\sim}{Y}$ to represent those of the current company

We tabulate the data of the useable shells from the two suppliers

| UNBROKEN TACO SHELLS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| new supplier | current supplier |  |  |  |
| 468 | 467 | 444 | 441 | 450 |
| 474 | 469 | 449 | 434 | 444 |
| 474 | 484 | 443 | 427 | 433 |
| 479 | 470 | 440 | 446 | 441 |
| 482 | 463 | 439 | 452 | 436 |
| 478 | 468 | 448 | 442 | 429 |

## EXAMPLE: TACO SHELLS



## c.d.f.s CONSTRUCTED FOR THE TWO SUPPLIERS



## c.d.f.s OF THE TWO SUPPLIERS

Clearly, the new supplier has the higher expected
number of useable shells per box; the two
distributions, however, are highly similar

The mean number of useable shells for the new
supplier is 473 and so the expected costs per

## c.d.f.s OF THE TWO SUPPLIERS

useable shell is $\mathbf{\$ 0 . 0 5 2 9}$; the minimum (maximum)
number of useable shells is $463(482)$

The mean number of useable shells for the
current supplier is 441 and so the expected costs
per useable shell is $\$ 0.0539$; the minimum
(maximum) number of useable shells is $429(452)$


## COMMENTS

We use the observed sample-based c.d.f.s to esti-
mate the mean of each supplier population

In general for an arbitrary r.v. $\underset{\sim}{X}$

$$
E\left\{\frac{1}{\underset{\sim}{X}}\right\} \neq[E\{\underset{\sim}{\boldsymbol{X}}\}]^{-1}
$$

## COMMENTS

and so we cannot use the approximation

$$
\boldsymbol{E}\left\{\frac{\mathbf{2 5}}{\underset{\sim}{X}}\right\} \approx \frac{\mathbf{2 5}}{\boldsymbol{E}\{\underset{\sim}{X}\}}
$$

$\square$ This example demonstrates the usefulness of the c.d.f.s in applications even when they can only be approximated for the limited data available

