ECE 307 – Techniques for Engineering Decisions

11. Basic Probability: Case Studies

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

OIL WILDCATTING: SITE DATA

□ We consider two possible exploratory well sites

- **O site 1: rather uncertain**
- **O** site 2: fairly certain for a low production level
- **Geological fact: if the rock strata underlying site**
 - 1 are characterized by a "dome" structure, there
 - are better chances to find oil than if "no dome"

structure exists

OIL WILDCATTING: SITE DATA

state	site 1 with \$ 100k drilling costs	site 2 with \$ 200k drilling costs	
	payoffs (k\$)	probability payoffs (k\$)	
dry	<i>dry</i> – 100		- 200
low production	150	0.8	50
high production	500	0	

MODELING OF SITE 1 UNCERTAINTY

 $\tilde{S} = structure \ r.v. = \begin{cases} dome \ structure \\ no \ dome \end{cases} with \ prob \ 0.6 \\ with \ prob \ 0.4 \end{cases}$

we condition on the event $\{\underline{S} = dome\}$

state X outcome	$P\left\{state \ X = x \middle \underbrace{S} = dome \right\}$
dry	0.60
low production	0.25
high production	0.15

SITE 1: NO DOME OUTCOMES

conditional probabilities on the event $\{\underline{S} = no \ dome\}$

<i>discrete state</i> outcome <i>x</i>	$P\left\{state \ \underline{X} = x \middle \underline{S} = no \ dome \right\}$
dry	0.850
low production	0.125
high production	0.025

DECISION TREE CONSTRUCTION

COMPUTATION OF PROBABILITIES OF STATES FOR SITE 1

$$P\{dry\} = P\{state of site 1 = dry\}$$

$$= P\{state = dry \mid \underline{S} = dome\} \cdot P\{\underline{S} = dome\} +$$

$$P\left\{state = dry \mid \underline{S} = no \ dome\right\} \cdot P\left\{\underline{S} = no \ dome\right\}$$

= (0.6)(0.6) + (0.85)(0.4)

= 0.7

COMPUTATION OF PROBABILITIES OF STATES FOR SITE 1

 $P\{low prod.\} = P\{state of site 1 = low prod.\}$

$$= P\left\{ state = low prod. \mid S = dome \right\} \cdot P\left\{ S = dome \right\} +$$

$$P\left\{\text{state} = \text{low prod.} \mid S = \text{no dome}\right\} \cdot P\left\{S = \text{no dome}\right\}$$

= (0.25)(0.6) + (0.125)(0.4)

CONFIGURATION OF PROBABILITIES OF STATES FOR SITE 1

 $P\{high prod.\} = P\{state X of site 1 = high prod.\}$

$$= P\left\{ state \ \underline{X} = high \ prod. \ | \ \underline{S} = dome \right\} \bullet P\left\{ \underline{S} = dome \right\} +$$

$$P\left\{\text{state } X = \text{high prod.} \mid S = no \text{ dome}\right\} \cdot P\left\{S = no \text{ dome}\right\}$$

= (0.15)(0.6) + (0.025)(0.4)

= 0.1

DECISION DIAGRAM COMPLETION

EVALUATION OF PAYOFFS

□ Site 1 evaluation:

$$\underbrace{E\{payoffs\}}_{EMV} = \sum (payoffs \text{ in state } X = x) P\{\text{state } X = x\}$$
$$= -100 \cdot (0.7) + 150 \cdot (0.2) + 500 \cdot (0.1)$$

= 10 k\$

□ Site 2 evaluation:

 $E\{payoffs\} = -200 \cdot (0.2) + 50 \cdot (0.8)$

= 0 k

VARIANCE EVALUATION

□ Site 1 evaluation:

$$\sigma_{1}^{2} = 0.7[-100 - 10]^{2} + 0.2[150 - 10]^{2} + 0.1[500 - 10]^{2}$$
$$= 36,400(k\$)^{2}$$
and so

$$\sigma_1 = 190.8 \, k$$

□ Site 2 evaluation:

$$\sigma_{2}^{2} = 0.2 \left[-200 - 0 \right]^{2} + 0.8 \left[50 - 0 \right]^{2}$$
$$= 10,000 \left(k \$ \right)^{2}$$

VARIANCE EVALUATION

and so

 $\sigma_2 = 100 k \$$

□ Therefore site 1 has greater variability and

therefore greater perceived *risk* than site 2 since

$$\sigma_1 \approx 2\sigma_2 > \sigma_2$$

PROBABILITY EVALUATION

state outcome	$\mathbf{D}(atata a)$	$P\{X = x \mid S = s\} P\{S = s\}$	
x	$P\{\text{state} = x\}$	s = dome	s = no dome
dry	0.7	0.36	0.34
low prod.	0.2	0.15	0.05
high prod.	0.1	0.09	0.01
$P\{\underline{S} = s\}$		0.60	0.40

JOINT PROBABILITIES

 $P\{state = low prod and S = dome\}$

$$= \underbrace{P\left\{state = low \ prod \mid \underline{S} = dome\right\}}_{0.25} \cdot \underbrace{P\left\{\underline{S} = dome\right\}}_{0.6}$$

= 0.15

DECISION DIAGRAM WITH PROBABILITIES

REVERSE PROBABILITIES

 $P\left\{\underline{S} = dome \mid state = dry\right\}$ $P\left\{ S = dome \text{ and state } = dry \right\}$ $P\left\{ state = dry \right\}$ $P\left\{state = dry \mid \underline{S} = dome\right\} \cdot P\left\{\underline{S} = dome\right\}$ $P\left\{ state = dry \right\}$

 $P\{state = dry\} = P\{state = dry | S = dome\} \cdot P\{S = dome\} +$

$$P\{state = dry \mid \underline{S} = no \ dome\} \cdot P\{\underline{S} = no \ dome\}$$

REVERSE PROBABILITIES

$$P\left\{\tilde{S} = dome \mid state = dry\right\} = \frac{(0.6)(0.6)}{(0.6)(0.6) + (0.85)(0.4)}$$
$$= \frac{0.36}{0.36 + (0.85)(0.4)}$$
$$= \frac{0.36}{0.70}$$
$$= 0.51$$
$$P\{S = no \ dome \mid state = dry\} = 1 - P\{S = dome \mid state = dry\}$$
$$= 1 - 0.51$$

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

= 0.49

DECISION ANALYSIS MONTHLY PROBLEM: MAY SUBSCRIPTION DATA

May subscription data	expiring subscriptions (%)	renewal ratio (%)
gift subscriptions	70	75
promotional subscriptions	20	50
previous subscribers	10	10
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: JUNE SUBSCRIPTION DATA

June subscription data	expiring subscriptions (%)	renewal ratio (%)
gift subscriptions	45	85
promotional subscriptions	10	60
previous subscribers	45	20
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: SUBSCRIPTIONS DATA

□ The concern is that overall proportion of

renewals had dropped from May to June

□ Yet, the table figures indicate that the proportion

of renewals had increased in each category

□ We need to analyze the data in a meaningful

fashion and correctly interpret it

DECISION ANALYSIS MONTHLY PROBLEM

□ We can view the data in the two tables as providing probabilities for the renewal *r.v.*

 $\mathbf{R} = \begin{cases} renewal \\ no renewal \end{cases}$

However, the information is given as conditional probabilities with the conditioning on the subscription type with r.v. <u>S</u>

$$\tilde{S} = \begin{cases} so \\ promotional \\ previous \end{cases}$$

DECISION ANALYSIS MONTHLY PROBLEM

□ We use the May and June data and compute:

$$P\left\{\underline{R} = renewal\right\} = P\left\{\underline{R} = renewal \mid \underline{S} = gift\right\} \cdot P\left\{\underline{S} = gift\right\} + P\left\{\underline{S} = gift\right\}$$

$$P\left\{ \underset{\sim}{R} = renewal \mid \underset{\sim}{S} = promo \right\} \cdot P\left\{ \underset{\sim}{S} = promo \right\} +$$

$$P\left\{\underline{R} = renewal \mid \underline{S} = previous\right\} \cdot P\left\{\underline{S} = previous\right\}$$

The renewal probabilities are computed for each

month

DECISION ANALYSIS MONTHLY PROBLEM

 $P\{R_{May} = renewal\} = (0.75)(0.7) + (0.5)(0.2) + (0.1)(0.1)$ = 0.635 $P\{R_{May} = renewal\} = (0.85)(0.45) + (0.6)(0.1) + (0.2)(0.45)$ = 0.5325

Due to the change of the mix,

 $P\{R_{\tilde{u}_{June}} = renewal\} < P\{R_{\tilde{u}_{May}} = renewal\}$

even though the renewal proportion increased in each category

RACIAL DISCRIMINATION CASE STUDY

□ We explore the relationship between the race of

convicted defendants in murder trials and the

imposition of the death penalty in these trials on

the defendants

□ This is a good example to illustrate the care

required to correctly interpret the data

DISCRIMINATION CASE STUDY: DATA

defendants		death penalty imposed		total
		yes	no	defendants
race	white	19	141	160
	black	17	149	166
total		36	290	326

DISCRIMINATION CASE STUDY: USING THE DATA

□ We define the *r.v.*s

$$\underline{D} = death \ penalty = \begin{cases}
 1 & death penalty is imposed \\
 0 & otherwise \\
 \underline{R} = race = \begin{cases}
 white & defendant is white \\
 black & defendant is black
 \end{cases}$$

□ We use data of the table to determine

$$P\left\{ \underbrace{D}_{\tilde{v}} = 1 \mid \underbrace{R}_{\tilde{v}} = white \right\} \text{ and } P\left\{ \underbrace{D}_{\tilde{v}} = 1 \mid \underbrace{R}_{\tilde{v}} = black \right\}$$

DISCRIMINATION CASE STUDY: USING THE DATA

□ The table provides values

$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \middle| \begin{array}{l} R \\ z \end{array} = white \right\} = \frac{19}{160} = 0.119$$
$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \middle| \begin{array}{l} R \\ z \end{array} = black \right\} = \frac{17}{166} = 0.102$$

□ These two probabilities indicate small difference

between the treatment of the two races

□ We use additional data to probe a little deeper

DISCRIMINATION CASE STUDY: USING MORE DATA

race of	race of defendant	death penalty imposed		total
victim		yes	no	defendants
white	white	19	132	151
	black	11	52	63
	total	30	184	214
black	white	0	9	9
	black	6	97	103
	total	6	106	112
total for all cases		36	290	326

DISCRIMINATION CASE STUDY: USING MORE DETAILED DATA

□ Next, we bring in the race of the victim by defining

the r.v.
$$V_{\tilde{z}} = \begin{cases} white & victim is white \\ black & victim is black \end{cases}$$

□ We have the following probabilities

$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \mid R = white, V = white \right\} = \frac{19}{151} = 0.126$$
$$P\left\{ \begin{array}{l} D \\ z \end{array} = 1 \mid R = black, V = white \right\} = \frac{11}{63} = 0.175$$

DISCRIMINATION CASE STUDY: USING MORE DATA

$$P\left\{ \begin{array}{l} D \\ \overline{z} \end{array} = 1 \mid R = white, V = black \right\} = \frac{\theta}{9} = \theta$$
$$P\left\{ \begin{array}{l} D \\ \overline{z} \end{array} = 1 \mid R = black, V = black \right\} = \frac{6}{103} = 0.058$$

Data disaggregation on the basis of conditioning

also on the *r.v. V* shows that blacks appear to get

the death penalty more frequently, about 5% more,

than whites independent of the race of the victim

APPARENT PARADOX

No difference between the overall imposition of death penalty and the race of the convicted murderers in the aggregated data case Clear difference in the disaggregated data case where the race of the victim is explicitly considered: *blacks* appear to get the death penalty with 5% higher incidence than *whites* The consideration of the victim's race allows the distinct differentiation of the *R* = *white* from the R = black cases

KEY ISSUE

 \Box Since the number of *black* victims for R = whitecases is θ , the result is a θ rate of death penalty that makes no contribution to the overall rate for the *R* = *white* cases □ In addition, the many *black* victims for the cases result in the relatively low death per attylack rate for black defendant / black victim cases and **lowers the overall death penalty rate for** V = black

© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

cases