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q Independence of events
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m continuous
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SAMPLE  SPACE
q Consider an experiment with uncertain outcomes 

but with the entire set of all possible outcomes 

known

q The sample space S is the set of all possible outcomes, 

i.e., every outcome is an element of S
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SAMPLE  SPACE

q Examples of sample spaces

m flipping a coin: 

m tossing a die:

m flipping two coins: 

m tossing two dice:

m hours of life of a device:

{ }S H,T=

S = 1,2, 3, 4, 5, 6{ }

S = (H ,H ), (H ,T ), (T ,H ), (T ,T ){ }
S = (i, j) : i, j = 1, ... , 6{ }

S = x : 0 ≤ x<∞{ }
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SUBSETS

q We say a set E is a subset of a set  F if E is 

contained in F and we write E        F or F E

q If E and F are sets of events, then E F

implies that each event in E is also an event in F

q Theorem

E F and    F E E =  F

⊃

⇔

⊂

⊂ ⊃

⊂
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SUBSETS

EF

F E

S

⊂
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EVENTS

q An event E is an element or a subset of the sample 

space S

q Some examples of events are:

m flipping a coin: 

m tossing a die:                     is the event that the 

die lands on an even number

E = H{ }, F = T{ }
E = 2, 4, 6{ }
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EVENTS

m flipping two coins:                               is the 

event of the outcome H on the first coin

m tossing two dice:                                             

is the event of sum of the two tosses is 7

m hours of life of a device:                             is the 

event that the life of a device is greater than 5

and at most 10 hours

E = H,H( ), H,T( ){ }

E = (1,6), (2,5), (3,4), (4,3), (5,2), (6,1){ }

E = 5 < x  ≤ 10{ }
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UNION  OF  SUBSETS

q We consider two subsets E and F ; the union of E

and F is denoted by E F and is the set of all 

the elements that are either in E or in F or in both 

E and F

q If E and F represent subsets of events, then set           

E F occurs only if either E or F or both occur

q E F is equivalent to the logical or

∪

∪

∪
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UNION  OF  SUBSETS
S

E  F

E F

∪
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UNION  OF  SUBSETS

q Examples:

m

m

m E = set of outcomes of tossing two dice with 

sum being an even number

F = set of outcomes of tossing two dice with 

sum being an odd number

E = H{ }, F = T{ } ⇒ E ∪ F = H ,T{ } = S
E = 2, 4, 6{ }, F = 1, 2, 3{ } ⇒ E ∪ F = 1, 2, 3, 4, 6{ }

       Þ E ∪ F = S
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INTERSECTION  OF  SUBSETS

q We consider two subsets E and F ; the intersec-

tion of E and F , denoted by E F , is the set of   

all the elements that are both in E and in F

q E and F represent subsets of events, then the 

events in E      F occur only if both E and F

occur

∩

∩

∩
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INTERSECTION  OF  SUBSETS

q We define       to be the empty set, i.e., the set 

consisting of no elements

q For event subspaces E and F , if E F = if 

and only if E and F are mutually exclusive events

q Examples:

m

m

E = H{ } , F = T{ } ⇒ E  ∩  F = ∅

E = 1, 3, 5{ } ,F = 1, 2, 3{ } ⇒ E  ∩  F = 1, 3{ }

Æ

Æ

∩



© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                    14

INTERSECTION  OF  SUBSETS

1E F

S

E F∩
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GENERALIZATION  OF  CONCEPTS

q We consider the countable subsets E 1, E 2, E 3, … 

in the state space S
q The term            is defined to be that subset 

consisting of those elements that are in E i for at 

least one value of i = 1, 2, … 

q The term            is defined to be the subset 

consisting of those elements that are in every subset

E i , i = 1, 2,…

E i
i
∪

E i
i
∩
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COMPLEMENT  OF  A  SUBSET
q The complement E c of a set  E is the set of all 

elements in the sample space S not in E
q By definition, S c =

q For the example of tossing two dice, the subset

is the 

collection of events that the sum of dice is 7; then, 

E c is the collection of events that the sum of dice 

is not 7

E = (1,6), (2,5), (3,4), (4,3), (5,2), (6,1){ }

Æ
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COMPLEMENT  OF  A  SUBSET

E  c

S

E



© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                    18

DE  MORGAN�S  LAWS

q De Morgan�s laws establish some important 

relationships between ,      and c

q The first De Morgan law states:

q The second De Morgan law states:                       

E i
i=1

n

∪
⎛

⎝
⎜

⎞

⎠
⎟

c

= E i
c

i=1

n

∩

E i
i=1

n

∩
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

c

= E i
c

i=1

n

∪

 ∪  ∩
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DEFINITION  OF  PROBABILITY

q Consider an event E in the sample space S and

let us denote by n (E )  the number of times that 

the event E occurs in a total of n random draws

q We define the probability P {E } for the sample 

space of the event E by

P E{ } = lim
n→∞

n(E )
n
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PROBABILITY  AXIOMS

q Axiom 1:

the probability that the outcome of the experiment 
is the event E lies in [0, 1 ]

q Axiom 2:

the probability associated with all the events in 
the sample space S is 1 as S is the collection of 
all the events of the sample space

0 ≤ P E{ } ≤ 1

P S{ } = 1
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PROBABILITY  AXIOMS

q Axiom 3: For any collection of mutually exclusive 

events E 1 , E 2 , . . .  with E i E j   = , i j ,

i.e., for a collection of mutually exclusive events, 

the probability that at least one of the events of 

the collection occurs is the sum of the 

probabilities of all the events in the collection

P E
i

i
∪

⎧
⎨
⎩

⎫
⎬
⎭

= P E
i{ }

i
∑ ,

Æ∩ ≠
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APPLICATIONS  OF  THE  AXIOMS

q In a coin tossing experiment, we assume that a 

head is equally likely to appear as a tail so that:

q If the coin is biased and we have the situation that 

the head is twice as likely to appear as the tail, 

then

  P H{ }{ } = P T{ }{ } = 0.5

    P H{ }{ } = 0.66!6 and P T{ }{ } = 0.33!3
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EXAMPLE
q In a die tossing experiment, we assume that each 

of the six sides is equally likely to appear so that 

q The probability of the event that the toss results 

in an even number is:

{ }{ } { }{ } { }{ } { }{ } { }{ } { }{ }
•

=1 2 3 4 5 6 0.166P = P = P = P = P = P

{ }{ } { }{ } { }{ } { }{ }2,4,6 = 2 + 4 + 6 = 0.166 3 = 0.5P P P P
•æ ö

ç ÷
è ø
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SIMPLE  PROBABILITY  THEOREMS

q The theorem on a complementary set states that 

the probability of the complement of the event  E

is 1 minus the probability the event itself

q For example, if the probability of obtaining an 

outcome         on a biased coin is 0.375, then the 

probability of obtaining an outcome         is 0.625

P E c{ } = 1 − P E{ }

 H{ }
 T{ }
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SIMPLE  PROBABILITY  THEOREMS
q The theorem on a subset considers two subsets 

E and F of S and states

q For example, the probability of rolling a 1 with a 
die is less than or equal  to the probability of 
rolling an odd value with that same die

q Theorem on the union of  two subsets concerns 
two subsets E and F of S and states that

E ⊂ F ⇒ P E{ } ≤ P F{ }

P E ∪ F{ } = P E{ } + P F{ } − P E ∪ F{ }
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SIMPLE  PROBABILITY  THEOREMS

q For example, in the experiment of tossing two fair 

coins                                                  

and the four outcomes are equally likely; the 

subset of the events that either the first or the 

second coin falls on H is the union of the subsets 

of events   

that the first coin is H and the subset of events 

S = H,H{ } , H,T{ } , T,H{ } , T,T{ }{ }

E = H,H{ } , H,T{ }{ }
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SIMPLE  PROBABILITY  THEOREMS

P E ∪F{ } = P E{ } + P F{ } − P E ∩F{ }

= 0.5 + 0.5 − P H ,H{ }{ }
0.25

! "## $##

= 0.75

represents the event second coin toss is H; so

F = H,H{ }, T,H{ }{ }
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CONDITIONAL  PROBABILITY

q A conditional event E is one that occurs given 

that some other event F has already occurred

q The conditional probability is the 

probability that event  E occurs given that event 

F has occurred and is defined by 

P E F{ } = P E ∩ F{ }
P F{ }

P E F{ }
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CONDITIONAL  PROBABILITY

q As an example, consider that a coin is flipped 

twice and assume that each of the events in         

is equally likely to occur; then, and are 

equally likely to occur

q The conditional probability that both flips result 

in         , given that the first flip is is obtained 

as follows: 

S = H,H{ } , H,T{ } , T,H{ } , T,T{ }{ }
 H{ }

 H{ } H{ }

 T{ }
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CONDITIONAL  PROBABILITY

{ } { }{ },= H,H H,TF

{ }{ }=E H,H

   

P E F{ } =
P E ∩F{ }

P F{ } =
P H,H{ }{ }

P H,H{ }, H,T{ }{ } = 0.5

0.25

0.5
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CONDITIONAL  PROBABILITY 
APPLICATION

q Bev must decide whether to select either a French

or a Chemistry course

q She estimates to have probability of 0.5 to get an 

A in a French course and that of  0.333 in a 

Chemistry course, which she actually prefers 

q She decides by flipping a fair coin and determines 

the probability she can get A in Chemistry:
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CONDITIONAL  PROBABILITY 
APPLICATION

m C is the event that she takes Chemistry

m A is the event that she receives an A in 

whichever course she takes

m then                    is the probability she gets A in 

Chemistry

P C ∩  A{ } = P C{ } P A C{ } = 0.5( ) 0.333( ) = 0.166

P C ∩  A{ }
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BAYES� THEOREM

q Consider two subsets of events E and F in S ; 

then,

q The proof of this theorem makes use of the 

definition of conditional probability

  

P E F{ } = P F E{ }P E{ }
P F E{ }P E{ }+P F E

c{ }P E
c{ }

  
P E F{ } = P E ∩F{ }

P F{ } =
P F E{ }P E{ }

P F{ }
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BAYES� THEOREM
and of the fact that any subset  F is the union of 

two nonintersecting subsets

q These expressions are derived from the relation

F = F ∩ E{ }∪ F ∩ E c{ }

P E
i

i
∪

⎧
⎨
⎩

⎫
⎬
⎭

= P E
i{ }

i
∑
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APPLICATION  OF  BAYES� THEOREM 
TO  DIAGNOSIS

q A laboratory test is 95% effective in correctly 

detecting a certain disease when it is present, but 

the test yields a false positive result for 1% of the 

healthy persons tested, i.e., with probability 0.01, 

the  test  result incorrectly concludes that a 

healthy person has the disease  

q We are given that 0.5% of the population actually 

has the disease
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APPLICATION  OF  BAYES� THEOREM 
TO  DIAGNOSIS

q We compute the probability that a person has the 

disease given that his test result is positive

q D is the  event that the tested person actually has 

the disease and

P {D } =  0.005

q E is the event that the test result is positive
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A  DIAGNOSIS  EXAMPLE  
COMPUTATION

q We evaluate the 

P D E{ } = P E D{ }P D{ }
P E D{ }P D{ }+P E D c{ }P D c{ }

  

=
0.95( ) i 0.005( )

0.95( ) i 0.005( ) + 0.01( ) i 0.995( )

= 0.323
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q In answering a question on a multiple choice test, 

a student either knows the answer or he guesses: 

the probability is  p  that the student knows the 

answer and so ( 1 – p ) is the probability that he 

guesses; a student who guesses has a probability 

of  1/m to be correct where  m is the number of 

multiple choice alternatives

MULTIPLE  CHOICE  EXAM  
APPLICATION
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MULTIPLE  CHOICE  EXAM  
APPLICATION

q We wish to compute the conditional probability 

that a student knows the answer to a question 

which he answered correctly 

q To evaluate we define

m C is the event that the student answers the 

question correctly

m K is the event that he actually knows the 

answer with P { K } = p
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MULTIPLE  CHOICE  EXAM  
APPLICATION

q If  m = 5 and  p = 0.5, the probability that a student 

knew the answer to a question he correctly 

answered is 5/6

P K C{ } =
P K ∩C{ }
P C{ }

=
P C K{ } P K{ }

P C K{ }P K{ } + P C K c{ }P K c{ }

   

=
1( ) p( )

1( ) p( )+ 1 / m( ) 1− p( )⎡
⎣

⎤
⎦
= mp

1+ m −1( ) p
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CONDITIONAL  PROBABILITY  
GENERALIZATION

q Consider three events A, B and C in the sample 

space  S

q We apply the conditional probability definition 

repeatedly to evaluate

P A ∩B∩C{ } = P A B∩C{ } ⋅ P B∩C{ }

= P A B∩C{ } ⋅ P B C{ } ⋅ P C{ }

P A ∩B∩C{ }
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CONDITIONAL  PROBABILITY  
GENERALIZATION

q However, we also have that

and therefore

P A ∩B C{ } ⋅ P C{ } = P A ∩B∩C{ }

= P A B∩C{ }P B C{ } ⋅ P C{ }

{ } { } { }=Ç Ç ×P P PC B C CA B A B



© 2006 – 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.                                    43

INDEPENDENT  EVENTS

q Two events E and F are said to be independent if 

and only if:

q Equivalently, E and F   are independent if and only 

if:

q We give an example concerning picking cards 

from an ordinary deck of 52 playing cards

P E ∩ F{ } = P E{ }⎡⎣ ⎤⎦ P F{ }⎡⎣ ⎤⎦

P E F{ } = P E{ }
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INDEPENDENT  EVENTS

m E is the event that the selected card is an ace

m F is the event that the selected card is a spade

m E and F are independent since

P E ∩ F{ } = 1
52

 and  so P E{ } = 4
52

 and P F{ } = 13
52
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INDEPENDENT  EVENTS
q Two coins are flipped and all 4 distinct outcomes 

are assumed to be equally likely 
q E is the event that the first coin is H and F is the 

event that the second coin is T
q Then, E and F are independent events with

and

P E{ } = P H ,H{ }, H ,T{ }{ } = 0.5

P F{ } = P H ,T{ }, T ,T{ }{ } = 0.5

  

P E ∩ F{ } = P H ,T{ }{ } = 0.5( ) 0.5( ) = 0.25
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PROBABILITY  DISTRIBUTIONS
q A probability distribution describes mathematically 

the set of probabilities associated with each 
possible outcome of a random variable (r.v.)

q A discrete probability distribution is a distribution 
characterized by a random variable that can 
assume a finite set of possible values

q A continuous probability distribution is a distribution 
characterized by a random variable that can 
assume infinitely many values
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

q Discrete probability distribution specification: the 

probability distribution of a  discrete r.v.       with  

n discrete possible values may be expressed in 

terms of either a

m a probability mass function that provides the list 

of the probabilities for each possible outcome

  !
Y
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P { 
!
Y  ≤ yi  },    i= 1,2, … , n 

or,

m a cumulative distribution function (c.d.f. ) that gives 

the probability that  a r.v. is less than or equal 

to a specific value

   
P {  
!
Y   = yi  },   i= 1,2, … , n ;

DISCRETE  PROBABILITY 
DISTRIBUTIONS
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

q As an example consider a set of chocolate chip 

cookies with at most 5 chips 

q Assume that the probability that  one of them has 

0, 1, 2, 3, 4 or 5 chips is 0.02, 0.05, 0.2, 0.4, 0.22, and 

0.11, respectively

q The probability mass function of the r.v. , defined to 

be the random number of chips on a cookie, can 

be given either in tableau format or as a graph

  !
Y
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

probability mass 
function

cumulative distribution 
function (c.d.f. )

y

0 0.02 0.02

1 0.05 0.07

2 0.20 0.27

3 0.4 0.67

4 0.22 0.89

5 0.11 1.00

  P !
Y = y{ }   P !

Y ≤ y{ }
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DISCRETE  PROBABILITY 
DISTRIBUTIONS

probability mass function cumulative distribution 
function (c.d.f.)

0    1   2    3   4    5

0.4
0.3
0.2
0.1

  P !
Y = y{ }

y
0   1   2   3   4   5

1.00
0.75
0.50
0.25

  P !
Y ≤ y{ }

y
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THE  EXPECTED  VALUE  

q The expected value            of the random variable        

is the probability–weighted average of all its 

possible values: for the set of possible values      

{ x 1, x 2, … , xn} for the variable 

q The expectation operator           is also defined for 

any function          of the r.v.

    
µ
!
X = E

!
X{ } = xi

i=1

n

∑ P
!
X = xi{ }

  !
X

  E !
X{ }

  !
X

  !
X

  E i{ }

f i( )
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THE  EXPECTED  VALUE  

q Let

then

q In general , for an arbitrary function f

  !
Y = f

!
X( )

  
E f

!
X( ){ } ≠ f E

!
X{ }( )

  E !
Y{ } = E f

!
X( ){ }
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THE  EXPECTED  VALUE  

q If            is affine, then,

and we have some special cases:

m for ,  we have

m for ,  we have

  f !
X{ }

   !
Y =
!
X 1 + ... + 

!
X n

  E !
Y{ } = a + bE

!
X{ }

  
E f

!
X( ){ } = f E

!
X{ }( )

    
E
!
Y{ } = E

!
X 1{ } + . . . + E

!
X n{ }

  !
Y = a + b

!
X
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THE  VARIANCE

q The variance of the random variable      is 

the expected value of the squared difference 

between the uncertain quantities and their 

expected value :

   
var

!
X{ } " E

!
X − E

!
X{ }⎡

⎣
⎤
⎦

2⎧
⎨
⎩

⎫
⎬
⎭
= xi − µ

!
X( ) 2

i =1

n

∑ P
!
X = xi{ }

  var
!
X{ }   !

X

  E !
X{ }
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THE  VARIANCE

m for   !
Y =  a + b

!
X

   

var
!
Y{ } = var a + b

!
X{ }

= E a + b
!
X( ) − a + bE

!
X{ }( )⎡

⎣
⎤
⎦

2⎧
⎨
⎩

⎫
⎬
⎭

= E b
!
X − bE

!
X{ }⎡⎣ ⎤⎦

2{ }
= b 2( )E

!
X − E

!
X{ }⎡⎣ ⎤⎦

2{ }
var
!
X{ }

" #$$$ %$$$

= b 2( )var
!
X{ }
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THE  VARIANCE

m for

then

q The standard deviation         is given by

     !
Y =

!
X1 + . . . +

!
Xn and P

!
Xi !

X j{ } = P
!
Xi{ } ∀ i ≠ j

  σ !
X = var

!
X{ }

  σ !
X

    
var

!
Y{ } = var

!
X 1{ } + . . . + var

!
X n{ }
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COVARIANCE  AND  CORRELATION 
COEFFICIENT   

q The covariance is defined by

q The correlation is defined by
    

cov
!
X,
!
Y{ } " E

!
X − E

!
X{ }( )

!
Y − E

!
Y{ }( ){ }

= xi −E
!
X{ }⎡

⎣
⎤
⎦

j=1

m

∑ y j −E
!
Y{ }⎡

⎣
⎤
⎦P

!
X = xi , !

Y = y j{ }
i=1

n

∑

  
ρ
!
X
!
Y =

cov
!
X,
!
Y{ }

σ
!
Xσ

!
Y

  cov
!
X , 
!
Y{ }

  ρ !X !Y
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q A company is selling a product G with different 
net profits corresponding to different levels of 
product sales

q The standard deviation and variance of the net 
profits       for the product are given by

APPLICATION  EXAMPLE   

  !
X

level of sales probability net profits [M $]

high 0.38 8

medium 0.12 4

low 0.50 0
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APPLICATION  EXAMPLE

   

E
!
X{ } = xi

i=1

n

∑ P
!
X = xi{ } = 8 0.38( )+4 0.12( )+ 0 0.50( )

= 3.52 M$

var
!
X{ } = xi − E

!
X{ }⎡⎣ ⎤⎦

2

i=1

n

∑ P
!
X = xi{ }

= 0.38 8− 3.52( )2
+0.12 4− 3.52( )2

+ 0.5 0 − 3.52( )2

= 13.8496 (M$)2

σ
!
X = var

!
X{ } = 13.8496 = 3.72 M$
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ANOTHER  EXAMPLE

q Consider the following probabilities:

and compute the covariance and correlation 

between 

    

P
!
Y = 10 |

!
X = 2{ } = 0.9    

P
!
X = 2{ } = 0.3 P

!
Y = 20 |

!
X = 2{ } = 0.1  

P
!
X = 4{ } = 0.7 P

!
Y = 10 |

!
X = 4{ } = 0.25 

P
!
Y = 20 |

!
X = 4{ } = 0.75

   
!
X and  

!
Y
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10

20

ANOTHER  EXAMPLE

y

x2 4
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ANOTHER  EXAMPLE

q Using the definition of conditional probability:

    

P
!
X = 2,

!
Y = 10{ } = P

!
Y = 10

!
X = 2{ }P

!
X = 2{ }

= 0.9( ) 0.3( )   =  0.27

P
!
X = 2,

!
Y = 20{ } = P

!
Y = 20

!
X = 2{ }P

!
X = 2{ }

= 0.1( ) 0.3( )   =  0.03

P
!
X = 4,

!
Y = 10{ } = P

!
Y = 10

!
X = 4{ }P

!
X = 4{ }

= 0.25( ) 0.7( )   =  0.175

P
!
X = 4,

!
Y = 20{ } = P

!
Y = 20

!
X = 4{ }P

!
X = 4{ }

= 0.75( ) 0.7( )   =  0.525
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ANOTHER  EXAMPLE 

   

P
!
Y = 10{ } = P

!
Y = 10

!
X = 2{ }P

!
X = 2{ } +

P
!
Y = 10

!
X = 4{ }P

!
X = 4{ }

= 0.27 +0.175 = 0.445

P
!
Y = 20{ } = 1 − 0.445( ) = 0.555

E
!
X{ } = 0.3( )2 + 0.7( )4 = 3.4

σ
!
X = 0.3( )(−1.4) 2 + 0.7( ) 0.6( )2 = 0.917

E
!
Y{ } = 0.445( )10 + 0.555( )20 = 15.55

σ
!
Y = 0.445( )(− 4.45) 2 + 0.555( ) 14.45( )2 = 11.17
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EXAMPLE 

2 10 1.4 4.45 6.23 0.27

2 20 1.4 14.45 20.23 0.03

4 10 0.6 4.45 2.67 0.175

4 20 0.6 14.45 8.67 0.525

ix jy   x i − E
!
X{ }   y j − E

!
Y{ }

  

x i − E
!
X{ }⎡⎣ ⎤⎦ ⋅

y j − E
!
Y{ }⎡⎣ ⎤⎦   

P
!
X,
!
Y x i ,y i{ }

−

− −

−
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EXAMPLE

   

cov
!
X , 
!
Y{ } = 0.27( ) − 6.23( )+ 0.03( ) − 20.23( )+ 0.175( )2.67

= 2.73

ρ
!
X
!
Y =

cov
!
X , 
!
Y{ }

σ
!
X σ

!
Y

=
2.73

0.917( ) 4.970( )
= 0.60
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q The continuous probability distribution specification of 
a continuous r.v. may be expressed either in 
terms of a 
m a probability density function (p.d.f.)

m or, a cumulative distribution function (c.d.f.)

which expresses the probability that the value 
of       is less or equal to a given value  x

CONTINUOUS  PROBABILITY 
DISTRIBUTIONS

   
F
!
X x( ) = P

!
X ≤ x{ } = f

!
X (ξ) dξ

−∞

x

∫

   
f
!
X (x) dx ≈ P x <

!
X ≤ x + dx{ }

  !
X

  f !X
⋅( )

  F !X
⋅( )

  !
X
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EXPECTED  VALUE,  VARIANCE, 
STANDARD  DEVIATION

q The expected value is given by

q The variance is defined by

q The standard deviation of is

   E !
X{ } = −∞

+∞
∫ ξ f

!
X (ξ) dξ

    
var

!
X{ } = ξ − E

!
X{ }⎡

⎣
⎤
⎦

2
f
!
X (ξ) dξ

−∞

+∞

∫

  σ !X
= var

!
X{ }

  µ !
X

    var
!
X{ } of

!
X

  !
X  σ !X
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THE  COVARIANCE  AND  THE  
CORRELATION

q The  covariance cov of the two continuous

r.v.s

where                is the joint density function of      

and 

q The correlation coefficient is computed by

   
cov

!
X,
!
Y{ } = ξ − E

!
X{ }⎡⎣ ⎤⎦ η − E

!
Y{ }⎡⎣ ⎤⎦ f

!
X,
!
Y ξ ,η( )−∞

+∞

∫ dξ dη
−∞

+∞

∫

  
ρ
!
X,
!
Y =

cov
!
X,
!
Y{ }

σ
!
Xσ

!
Y

  !
X,
!
Y{ }

   !
X and

!
Y

   
f
!
X,
!
Y

i,i( )   !
X

  !
Y

  ρ !X,
!
Y
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APPLICATION  

q We wish to guess the age      of a movie star 

based on the following data: 

m we are sure that she is older than 29 and not 

older than 65

m we assume the probability that she is between 

40 and 50 is 0.8 and

m we also estimate that                               and

  !
A

   P !
A > 50{ } = 0.15

   P !
A ≤ 44{ } = P

!
A > 44{ }

   P !
A ≤ 40{ } = 0.05
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APPLICATION  

q We construct the table of cumulative probability

   P !
A ≤ 29{ } = 0.00

   P !
A ≤ 40{ } = 0.05

   P !
A ≤ 44{ } = 0.50

   P !
A ≤ 50{ } = 0.85

   P !
A ≤ 65{ }=1.00
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APPLICATION
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APPLICATION

10 20 30 40 50 60 70

years  x

  
P 40 < A

~
≤ 50{ }

  
f
!
A x( )

x


