ECE 307 – Techniques for Engineering Decisions

Lecture 1. Course Overview

George Gross

Department of Electrical and Computer Engineering

University of Illinois at Urbana–Champaign

SCOPE OF COURSE

- ☐ The course covers *techniques* that are useful when combined with the appropriate technical knowledge, to make *engineering/economic decisions*
- ☐ Such decisions are typical of those made by business firms, government–owned enterprises and agencies and individuals
- ☐ Our focus is on the *systematic evaluation* of the set of alternatives before we make a decision on a given problem

SOME EXAMPLES OF DECISION MAKING PROBLEMS

- ☐ Introduction of a new product
- Expansion of production facilities/warehousing
- □ Adoption of new technology
- ☐ Implementation of a new production schedule
- ☐ Changes in the production mix
- ☐ Risk management in purchase/sale activities
- ☐ Optimal scheduling of processes/projects

ECE 307: TWO BASIC THRUSTS

- □ Development of the analytical framework for decision making based on a sound foundation with the goals to enable the decision maker to
 - O undertake an appropriate analysis; and
 - O systematically evaluate various alternatives
- □ Provision of training for engineers to play an increasingly more prominent role in the decision making processes in their work environment

THE UNDERLYING BASIS

- ☐ Decisions are made by selecting from possible alternatives with reference to the future, which is inherently *uncertain*
- □ We can set up a useful basis by the formulation of the decisions in *economic* terms
- ☐ A key consideration is the nature of the introduced assumptions to enable us to undertake the systema-

tic analysis and the evaluation of alternatives

☐ A factory manufactures three different products that require various levels of resources and result

☐ The constraints on each resource are given

in different benefits (profits)

- ☐ Problem is to determine the optimal daily mix, i.e.,
 - the production schedule that maximizes profits

without the violation of any constraints

product		\boldsymbol{A}	В	C	limit
uired	labor (h)	1	1	1	100
ces required of the state of th	material (lb)	10	4	5	600
resources required per unit of product	A&G(h)	2	2	6	300
profits per unit of product (\$)		10	6	4	

- ☐ We formulate the decision problem by defining the decision variables:
 - x_i = daily production level of product i, i = A, B, C
- ☐ We construct a programming problem for the schedule by expressing
 - O the objective function;
 - O the constraints; and,
 - O the common sense requirements

in mathematical terms

constraints

PRODUCT MIX OPTIMIZATION PROBLEM

$$max Z = 10x_A + 6x_B + 4x_C$$

objective

$$x_A + x_B + x_C \leq 100$$

labor

$$10x_A + 4x_B + 5x_C \le 600$$

material

$$2x_A + 2x_B + 6x_C \le 300$$

A & G

$$x_A, x_B, x_C \geq 0$$

reality check

☐ The optimal solution is

$$x_{A}^{*} = 33.33$$

$$x_{A}^{*} = 33.33$$
 $x_{B}^{*} = 66.67$ $x_{C}^{*} = 0$

$$x_{C}^{*} = \theta$$

and correspond to maximum profits

$$Z^* = \$ 733.33$$

☐ The shadow prices that correspond to the constraints state the change in profits for each unit of an additional resource have values:

labor: \$ 3.33 material: \$ 0.67 A&G: \$ 0

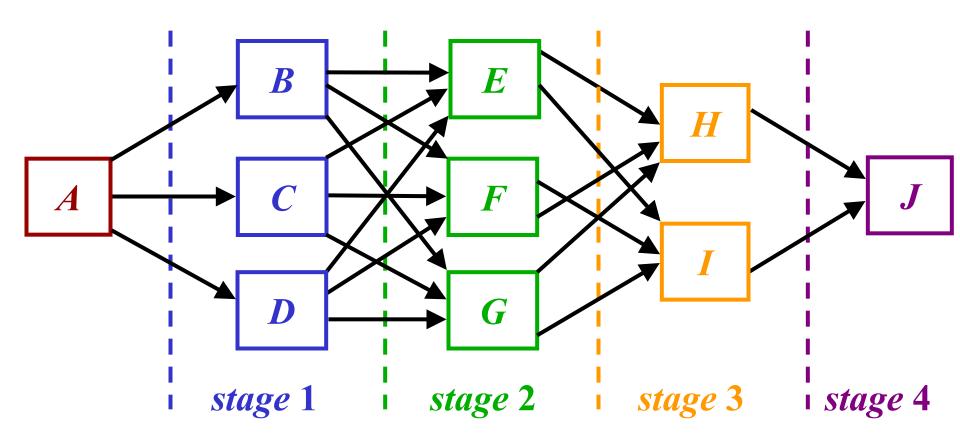
☐ We next examine a simple *what if sensitivity case*

related to the use of overtime labor

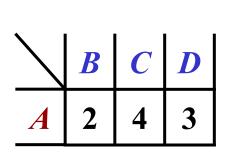
☐ We are interested to determine the number of

overtime hours that is profitable to schedule

without any impact on the optimal product mix


O 20 hours of labor overtime increase profits by

$$(20)(3.33) = \$66.6$$


- O as long as the cost of overtime labor does not exceed \$ 66.6 it is worthwhile to use it
- O the optimal product mix remains unchanged, as we produce only products A and B and no

product C

☐ Mr. Jones has to travel from a fixed starting point
A to a fixed destination point J with the choice in
the intermediate points he goes through:

☐ The relative "costs" for the various possible paths are given by

	E	F	G
B	7	4	6
C	3	2	4
D	4	1	5

	H	I
E	1	4
F	6	3
G	3	3

	$oldsymbol{J}$
H	3
I	4

□ The problem is to select the trajectory that

minimizes the total costs of the trip

- **□** Solution approaches:
 - O enumerate all possibilities: this is, in general, too time consuming since we need to consider

$$3 \times 3 \times 2 = 18$$

different routes for this simple case

 select the best for each successive stage: myopic decision making solution leads to the path

$$A \rightarrow B \rightarrow F \rightarrow I \rightarrow J$$

with costs of 13

- O use some *heuristic* approach which allows to sacrifice a little at one stage in the hope of attaining savings thereafter: for example, the path $A \rightarrow D \rightarrow F$ costs 4 which is less than the path $A \rightarrow B \rightarrow F$, whose costs are 6
- □ The optimal trajectory is

$$A \rightarrow C \rightarrow E \rightarrow H \rightarrow J$$

whose costs are 11

☐ There are two additional routes, which cost 11:

$$A \rightarrow D \rightarrow E \rightarrow H \rightarrow J$$

$$A \rightarrow D \rightarrow F \rightarrow I \rightarrow J$$

☐ Thus, this is a problem that does not have a

unique optimum for the given data

BUSING PROBLEM

☐ Three school districts in *Busville* have a

distribution of Caucasians (C) and African Americans

(A) as shown in the table

district	number of students		
	\boldsymbol{C}	\boldsymbol{A}	
1	210	120	
2	210	30	
3	180	150	

BUSING PROBLEM

□ Implementation of the *Supreme Court* ruling on racial balance requires that each of the three districts have exactly 300 students with identical racial make–up, *i.e.*, that

$$\left(\frac{A}{C}\right)_1 = \left(\frac{A}{C}\right)_2 = \left(\frac{A}{C}\right)_3$$

and the only means to attain the racial balance goal is through busing

BUSING PROBLEM

☐ Given the distances between the districts,

determine the total minimum distance that

students must be bussed to satisfy the racial

balance requirements

district	number of students		distance to district	
aisirici	\boldsymbol{C}	A	2	3
1	210	120	3	5
2	210	30		4
3	180	150	4	

☐ On a television game show, the host subjects

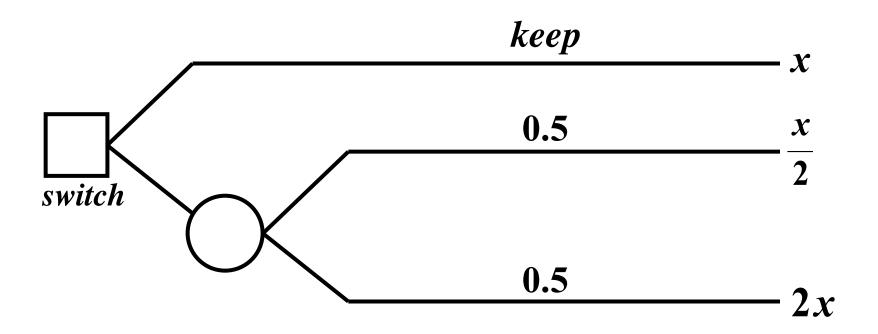
contestants to unusual tests of mental skill

- ☐ On one, a contestant may choose one of two
 - identical envelopes labeled A and B each of
 - which contains an unknown amount of money
- ☐ The host reveals, however, that one envelope
 - contains twice as much money as the other

After choosing A, the host suggests that the contestant might want to switch. The host states: "Switching is clearly advantageous. Suppose you have amount x in your envelope A. Then B must contain either x/2 or 2x – each with the probability 0.5. In fact, now that I think about it, I'll only let you switch if you pay me

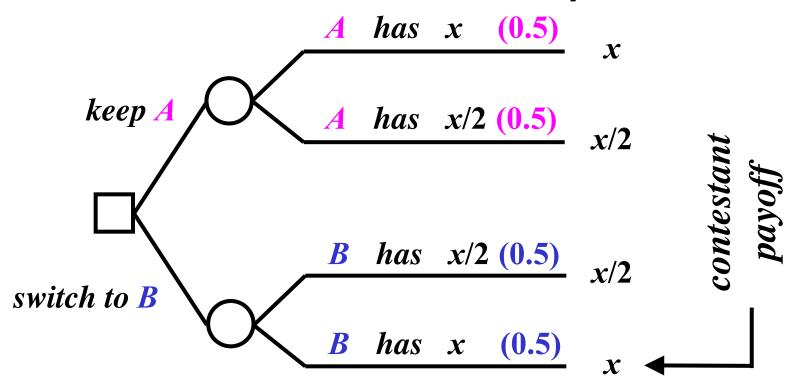
10 % of your winnings. What do you say? You'll still be ahead."

☐ The contestant replies:


"No deal. But I'll be happy to switch for free.

In fact, I'll even let you choose which envelope

I get. I won't even charge you anything!"


☐ Who is correct?

☐ The host is proposing a decision tree that looks like this:

which does not correctly represent the situation

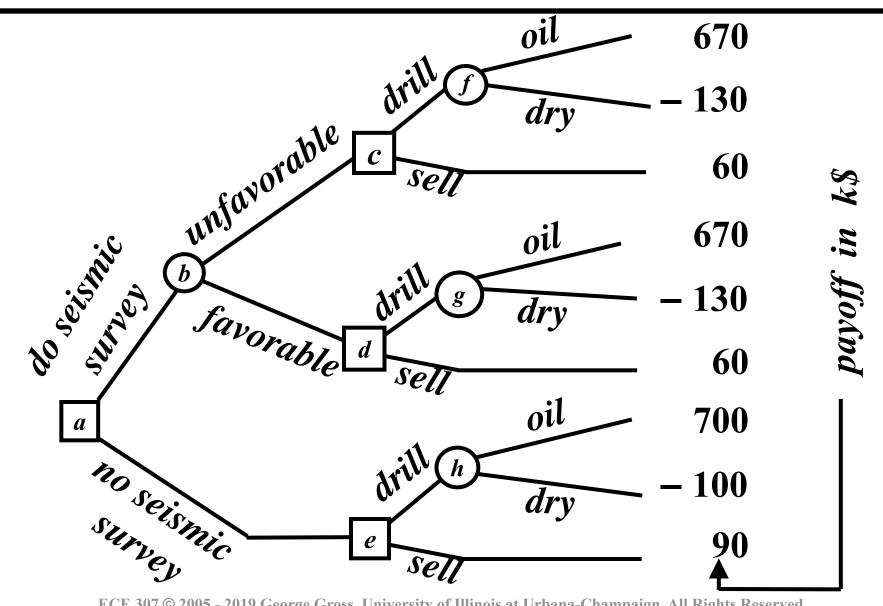
 \square Rather, we have for the two envelopes A and B

☐ The two decision branches are identical from the view of the decision maker – the contestant

- ☐ The *Greazy Company* owns a tract of land that may contain oil; the report of a consulting geologist indicates that there is 1 chance in 4 that oil exists
- □ Because of this prospect, another oil company has offered to purchase the land for \$90,000 but *Greazy* assesses the option to hold the land so as to drill for oil itself: if oil is found, the profits are expected to be \$700,000 but if the land is dry, the losses are expected to be \$100,000

decision	payoff (\$)		
alternative	land has oil	land is dry	
drill for oil	700,000	(100,000)	
sell the land	90,000	90,000	
probability	0.25	0.75	

■ Evaluation of the two alternative actions


action	expected payoff (k\$)		
drill	0.25(700) + 0.75(-100) = 100		
sell	0.25(90) + 0.75(90) = 90		

and the better alternative is to drill for oil

☐ The decision is *strongly dependent* on how good is

the knowledge of the probabilities

- □ Sometimes it is possible to undertake further work before a decision is taken; e.g., an available option before making a decision is to conduct a detailed seismic survey, with costs of \$30,000, to obtain a better estimate of the probability of oil
- We construct a decision tree to
 - O visually display the problem
 - O organize systematically the computation

GENERAL FRAMEWORK FOR DECISION MAKING UNDER UNCERTAINTY

- ☐ The decision maker must select an alternative from a set of possible actions; we refer to them as the set of feasible alternatives
- ☐ The underlying premise is that the choice of action is made under *uncertainty* because the outcomes are affected by random factors outside the control of the decision maker; such a situation requires a

classification of the possible states of nature

GENERAL FRAMEWORK FOR DECISION MAKING UNDER UNCERTAINTY

- □ For each action and state of nature, the value to the decision maker of the consequences of an outcome is determined and quantified in terms of the so-called payoff
- ☐ The *payoff* is defined as the measure of the value to the decision maker of the consequences of an

outcome

GENERAL FRAMEWORK FOR DECISION MAKING UNDER UNCERTAINTY

- ☐ The expected payoffs are used to select the optimal action for the decision maker according to some selected criterion
- □ Example: *Bayes' decision rule* centers on the use of the best available estimates of the probabilities of the states of nature to calculate the expected value of the *payoffs* for each possible action and then to choose the action that obtains the

maximum expected payoffs

DECISION ANALYSIS

- □ We study decision analysis since its application can lead to better decisions
- We need to differentiate between good decisions and lucky outcomes
- ☐ Every decision may have a *lucky* or an *unlucky* outcome
- ☐ A good decision is one that gives the best outcome
- ☐ The goal is to make effective decisions *more*

consistently

ECE 307

- ☐ Prerequisite: ECE 210
- ☐ Corequisite: ECE 313
- □ Required texts
 - A. Ravindran, D. T. Phillips and J. J. Solberg,
 "Operations Research: Principles and Practice," J.
 Wiley, New York, 1992.
 - O R. T. Clemen, "Making Hard Decisions: An Introduction to Decision Analysis," Duxbury Press/Wadsworth Publishing Company, 1995.
- ☐ Course Website: courses.engr.illinois.edu/ece307/

PROPOSED GRADING POLICY

- ☐ Two exams: midterm and final
- ☐ Two team project presentations
- □ Proposed grade allocation

component	percentage
homework	15
team projects	10
midterm	25
final	50
total	100

- □ Introduction: nature of engineering decisions; structuring of decisions; role of models; interplay of economics and technical/engineering considerations; decision making under certainty and uncertainty; good decisions vs. "good" outcomes; tools
- □ Resource allocation decision making using the linear programming framework: problem formulation; basic approach; duality; economic interpretation;

sensitivity analysis; meaningful interpretation of the results

Scheduling and assignment decisions using

network flow concepts: transshipment problem

formulation and solution; application to matching

decisions; network optimization; scheduling

applications; project management

- □ Sequential decision making in a *dynamic* programming framework: nature of the dynamic programming approach; problem formulation; solution procedures; key limitations
- □ Probability theory: random variables; probability distributions; expectation; conditional probability; moments; convolution
- ☐ Statistical concepts: data analysis; statistical measures; estimation

- □ Application of probabilistic concepts to modeling of uncertainty in decision making: modeling of the impacts of uncertainty; applications to siting, investment and price volatility problems
- □ Decision making under uncertainty: decision trees; value of information; uses of data; sensitivity analysis and statistics
- □ Case studies and presentations