LTspice tutorial Part 3- Basic circuits

Prerequisites

- Please make sure you have completed the following:
 - LTspice tutorial part 1 (download and installation)
 - LTspice tutorial part 2 (components and basic interface)

Tutorial 3 Objectives

- 1. Learn how to make a basic circuit in LTspice
- 2. Learn how to use LTspice's circuit analysis tools
- 3. Determine the time constant of an RC circuit

• Begin by opening LTspice and creating a new schematic

- Now we will import our circuit components
 - a. Ground
 - b. Resistor
 - c. Capacitor

- Now we will import the voltage supply
 - a. Select "components"
 - b. Type "voltage" in the pop up box
 - c. Hit okay

- Now specify the values of your components
 - Right click on them a and fill in the appropriate value

- Connect your circuit components using the wire tool
- Use the move and drag tool to move components
- Use the rotate and flip tools as needed (ctrl+R) is an easy shortcut to rotate

Congratulations! Your first circuit is complete and should look like this:

• Begin by creating a new analysis

- We will need to set the parameters of our analysis
 - Recommended settings: Transient sweep start time 0 end time 1
 - \sim The start and end times are up to you and can vary a lot from problem to problem

- Now we will need to run our analysis, be patient this will take some time
 - This is done by hitting the "run" button again
 - If simulation parameters need to be changed, right click the analysis object on the model

• An empty plot will appear once the analysis is complete

- Select the node on the circuit you want to probe and its waveform (called a trace) will appear on the plot
 - Multiple nodes can be selected, resulting in multiple traces being plotted

- That's not right
 - We expect an exponential, but we don't
- Need to set initial condition
 - edit-> SpiceDirectives-> type ".ic V(n002)=0"-> hit ok
 - .ic V(n002)=0 -> initial condition of Voltage of node 002 is 0
 - We do this because LT spice doesn't assume nodes are at 0 when the simulation starts

- Once a trace is plotted, algebraic manipulations can be performed with the waveform by right clicking it
 - Example: We can subtract voltages to do KVL

- We do this by right clicking on the trace label on the top of the plot then entering the expression we want to plot
- We can do basic algebraic operations using both different traces as well as constants
- We can rename nodes to make this process easier as well (this is covered in more detail in tutorial 4)

😕 Expression Editor	×	🗗 Expression Editor 🛛 🕹
Default Color: Attached Cursor: (none)	ОК	Default Color: Attached Cursor: (none) V
Enter an algebraic expression to plot:	Cancel	Enter an algebraic expression to plot: Cancel
V(n002)+2	~	V(n002)+V(n001)*2
	~ -	· · · · · · · · · · · · · · · · · · ·
Delete this Trace		Delete this Trace

• Just like an oscilloscope we may need to change the scaling to see good data. This is done by right clicking the axis and changing the limits

• Now we can see the waveform we want

Congratulations! You have completed your first analysis of a circuit in LTspice!

Performing basic RC circuit analysis

Assignment Submit plots and circuit schematics of the following 3 waveforms:

Create 3 RC circuits, and display their waveforms (hint change resistor and capacitor values to see what happens)

Waveform 1: Time constant 500 ms, 5V amplitude, 0V offset

Waveform 2: Time constant 200 ms, 2V amplitude, 10V offset

Waveform 3: next page

Performing basic RC circuit analysis

Assignment:

Create 3 RC circuits, and display their waveforms (hint change resistor and capacitor values to see what happens)

Waveform 3: right click on the voltage source, go to advanced settings and configure the source as below, and plot the voltage across the capacitor

ダ Independent Voltage Source - V1	×
Functions	DC Value
(none)	DC value:
PULSE(V1 V2 Tdelay Trise Tfall Ton Period Ncycles)	Make this information visible on schematic:
SINE(Voffset Vamp Freq Td Theta Phi Ncycles)	
O EXP(V1 V2 Td1 Tau1 Td2 Tau2)	Small signal AC analysis(.AC)
◯ SFFM(Voff Vamp Fcar MDI Fsig)	AC Amplitude:
O PWL(t1 v1 t2 v2)	AC Phase:
O PWL FILE: Browse	Make this information visible on schematic:
Vinitial[V]: 0 Von[V]: 9	Parastic Properties Series Resistance[Ω]: Parallel Capacitance[F]: Make this information visible on schematic: ☑
Trise[s]: .1u Tral[s]: .1u Tral[s]: .1u	
Tperiod[s]: .02 Ncycles: 10	
Additional PWL Points Make this information visible on schematic: 🗹	Cancel OK