Charge and Current

- an electron is a charged subatomic particle
- the coulomb (C) is a measure of electric charge with

$$\frac{-1.6 \times 10^{-19}C}{electron} = \frac{-1.6 \text{ e} - 19 C}{electron}$$

Electric current is the flow of electric charge in time (C/s)

$$I = \Delta Q/\Delta t$$

The ampere is the unit of electric current

$$1 A = 1 C/s$$

Q2 Answers 0.160 A

lmage is public domain.

0.00000016 A

160e-12 A

every nanosecond, what is the electric current in amps? L1Q2: A "typical" electronics circuit might have 1 billion electrons pass a cross section of a wire L1Q1: What is the charge of 1 billion electrons?

Voltage and Energy

- calories, kWh, mAh, etc. **Energy** is **the ability to do work**, measured in joules (*J*), BTUs,
- **Voltage** is **the work done per unit charge** (eg. J/C) against a static electric field to move charge between two points
- Also, 1 volt (1 V) is the electric potential difference between two that passes through it. points that will impart $1\,J$ of energy per coulomb ($1\,C$) of charge

$$\Delta E = \Delta Q \times V$$

L1Q5: What is the average current if the energy in Q4 is provided in five seconds? L1Q4: What is the charge moved through 400 V (EV battery) to provide 800 kJ of energy? L1Q3: A certain battery imparts 480 pJ to every 1 billion electrons. What is its voltage?

6

Energy and Power

Power is the rate at which energy is transferred.

And power is current voltage Also, power is (rate of charge flow) (potential difference)

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta Q}{\Delta t} \ V = I \ V$$

L1Q6: A flashlight bulb dissipates 6 W at 2 A. What is the supplied voltage?

L1 Learning Objectives

- a. (L1a) Compute relationships between charge, time, and current. b. (L1b) Compute relationships between ' (L1b) Compute relationships between charge, voltage, and energy.
- $\dot{\mathbf{c}}$ (L1c) Compute relationships between power, current, and voltage.

$$I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{\Delta E}{\Delta Q}$$
$$\Delta E = \Delta Q \times V$$
$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta Q}{\Delta t} V = IV$$