L28Q1	How many photons per second are provided by a 1 mW650 nm laser?	3.28E+15 photons/sec			
L28Q2	Estimate the solar irradiance (W/m2) at sea level(hint: total red area).	900	W/m^2		
L28Q3	What is the maximum wavelength absorbed by Si (Eg= 1.1 eV),	1100	nm		
	by GaN(Eg= 3.4 eV),	365	nm		
	and by diamond carbon (Eg= 5.5 eV)?	225	nm		
L28Q4	Sparkfun'sBPW34 photodiode generates 50 μAof current when reverse-biased	0.67	mA	0.00067	Α
	and illuminated with 1 mW/cm2at 950 nm. If a 1 mW950 nm laser is focused o				
	n the photodetector, what is the resulting photocurrent?				
L28Q5	Identify the point above.				
	A E voltage is higher but no current. At A current is higher but no voltage				
	At E voltage is higher but no current. At A current is higher but no voltage.				
L28Q6	If Sparkfun's BPW34 photodiode has ISC =40 μA and VOC =350 mV when illumina	7	μW		
L28Q7	Assuming 500 W/m2solar irradiance and a 25% efficient solar panel, how much	48	m^2		
	roof area should be covered to supply 50A at 120V?				
L28Q8	Given an average of 5 hours of sunshine per day and a utility cost of \$0.11/kWh	\$3.30	\$/day		
	how much of the utility cost can such a solar panel save?				