L15Q1	Given these constraints, can the				
	"dependent" current source deliver				
	power?	No. P=Ic*Vout always > 0			
L15Q2	Right-side KVL: Find equation relating				
	Imax to Imin	Imax=(Vcc-Vmin)/Rc			
L15Q3	Left-side KVL: Find the smallest Vin such				
	that Ib > 0 (if Von=0.7V)	Vin > 0.7V			
L15Q4	What is Ib if Vin = 3V and Rb = $4.6k\Omega$?	0.5	mA	0.0005	Α
L15Q5	Let Vcc = 6V, Rc = 580 Ω , Vmin = 0.2V, β =				
	100. What is Ic under the same input				
	settings as the previous quation?	transistor in SATURATION			
	lc=Imax	10	mA	0.01	Α
L15Q6		If used under conditions			
		similar to those used in the			
	Approximate values of β (hfe), Vbeon,	lab β ~ 50, Vbeon ~ 0.9V,			
	Vceesat from the datasheet.	and Vcesat ~ 0.6V			
L15Q7	Find Ib	lb = 100μA			
L15Q8	Find Ic	lc = 10mA			
L15Q9	Find Ib	lb = 0			
L15Q10	Find Ic	Ic = 0			
L15Q11	Find Ib	lb = 0.4mA			
L15Q12	Find Ic	lc = 19.33333mA			
L15Q13					
		operating at the transistion			
	Find Ic and identify which regime the	between the CUTOFF and			
	transistor is operating	ACTIVE regions			
	lb	0	mA		
	lc	0	mA		
L15Q14	Find Ic and identify in which regime the	operating in the ACTIVE			
	transistor is operating.	region			
	lc	10	mA	0.01	Α
L15Q15	Determine the power consumed by the				
	transistor.	P=Ib*Vbe+Ic*Vce			
		62.1	mW	0.062	W