
Module: Arduino Input/Output (I/O) Pins in OUTPUT mode

Module Outl ine
	

In	 this	module	 you	will	 be	 learning	how	 to	use	 the	Digital	 I/O	pins	on	 the	Arduino.	 	Digital?	 	What	does	digital	mean	 in	 this	
context?		So	far	voltages	and	current	are	related	to	physical	processes	that	you	have	learned	to	model	–	what	does	it	mean	to	
say	that	a	signal	is	digital?		The	Arduino	board	has	analog	input	pins	that	you	will	learn	to	use	in	a	subsequent	module	–	how	is	
digital	different	from	analog?	

The	history	of	the	Digital	Age	is	a	fascinating	one	and	the	personnel	in	the	ECE	department	played	no	small	role	in	this	history	
(and	TI	too).		The	achievement	of	being	able	to	miniaturize	devices	that	are	to	first	order	electronically	controlled	switches	truly	
changed	how	humans	 live	their	 lives.	 	This	ability	allowed	devices	based	on	the	concept	of	ON	and	OFF	to	be	put	together	to	
build	computers	that	are	now	an	integral	part	of	our	lives.		Using	the	digital	I/O	pins	will	help	you	see	how	this	abstract	Boolean	
2-state	notion	of	ON	or	OFF	maps	onto	real	voltage	signals.	

After	 constructing	 the	 chassis	of	 your	 car	 and	mounting	 the	motors,	 the	only	way	 to	get	 the	vehicle	 to	move	 is	 to	physically	
connect	the	motor	terminals	to	either	the	power	supply	or	battery.	So	far	you	have	done	this	by	hand	or	with	hand-operated	
switches.		The	autonomous	in	autonomous	vehicle	means	that	your	car	must	navigate	on	its	own	responding	only	to	the	input	of	
sensors	and	other	devices	that	monitor	some	parameter	of	the	environment.	

	

	

.	

	

	

	

	

Name/NetID:																																								Teammate:			

Multi-Valued	 Logic	 –	 our	
current	computers	are	based	
on	 a	 2	 –	 valued	 logic	 –	 a	
concept	 dating	 back	 to	 at	
least	 the	 ancient	 Greeks.		
Everything	 is	 either	 TRUE	or	
FALSE,	ON	or	OFF,	but	there	
are	peopling	looking	into	the	
value	of	a	construct	that	has	
more	 than	 just	 2	 states.	 	 I	
wonder	 what	 advantage	
there	 would	 be	 to	 having	 a	
3-state	 logic	 system	 with	
TRUE,	 FALSE,	 and	 MAYBE.		
Or	 4	 or	 5	 or…	 	 isn’t	 a	 signal	
we	call	an	analog	 signal	 just	
a	 system	 with	 an	 infinite	
number	of	states?	

	

Notes:	
At	the	hardware	level	a	digital	signal	is	just	a	voltage	that	either	has	a	“high”	value	or	a	“low”	value.		These	values	are	different	
for	different	families	of	devices	–	the	terminology	family	refers	to	the	fabrication	process	that	made	the	digital	hardware.		The	
Arduino	board	and	clones	are	made	to	interface	with	two	logic	types	or	families	–	TTL	transistor-transistor-logic	and	CMOS	
complementary-metal-oxide-semiconductor.		Each	has	a	different	definition	for	what	constitutes	a	HIGH	and	LOW	voltage.		The	
SparkFun	website	https://learn.sparkfun.com/tutorials/logic-levels	has	a	marvelous	and	more	detailed	description.	

Any	of	the	logic	families	works	with	a	range	of	voltages	–	the	TTL	family	used	a	voltage	range	from	0-5V	and	the	CMOS	most	
typically	uses	a	range	from	0-3.3V.		This	is	where	things	get	a	little	confusing	because	the	hardware	dealing	with	the	digital	
signals	must	define	ranges	that	are	considered	“high”	and	ranges	that	are	“low”.		In	most	technologies	there	is	a	middle	range	of	
“I	don’t	know”	where	the	hardware	behaves	unpredictably.		If	a	digital	device	is	connected	to	another	digital	device	this	is	not	a	
problem	since	the	output	levels	are	always	in	the	appropriate	ranges.		It	is	more	problematic	when	interfacing	to	analog	
hardware.	

The	figure	below	summarizes	how	the	Low-Power	Schottky	TTL	circuits	behave	on	both	input	and	output.		The	term	Schottky	
refers	to	a	fabrication	method	used	to	make	the	transistors	on	the	integrated	circuit	switch	more	quickly	without	compromising	
low-power	consumption.		The	digital	inputs	of	most	circuitry	can	be	considered	perfect	measuring	devices	meaning	that	the	
behavior	of	the	circuitry	connected	to	the	input	pin	is	not	modified	and	the	internal	hardware	interprets	the	voltage	range	0-.8V	
as	a	LOW	or	0	state,	and	2.4-5V	as	a	HIGH	or	1	state.		The	outputs	can	be	considered	ideal	voltage	sources.		Even	though	there	is	
a	range	for	the	voltages	associated	with	HIGH	and	LOW	most	Integrated	circuits	provide	voltages	that	are	nearly	the	highest	(in	
this	case	5V)	as	a	HIGH	and	0V	as	a	LOW.		In	fact	a	voltage	that	deviates	much	from	5V	indicates	that	there	is	a	problem	with	the	
circuit.		

	

	

	

	

	

	

	

	

Notes:	
The	electrical	interface	of	the	digital	I/O	pins	on	the	Arduino	are	actually	more	flexible	than	most	common	logic	families.		They	
were	constructed	so	that	the	input	pins	recognize	as	many	different	types	of	devices	as	possible.		On	output	the	Arduino	
consistently	provides	a	HIGH	voltage	very	close	to	5V	and	a	LOW	close	to	0V.		The	output	pin	interface	on	the	board	are	well-
designed	so	that	the	voltages	remain	the	same	for	a	wide	range	of	loads	acting	like	an	ideal	voltage	source	that	is	either	ON	or	
OFF	as	the	pin	is	connected	to	hardware	that	draws	40mA	or	less.	

	

	

	

Notes:	

Procedures
	

OUTPUTS
	

Most	of	your	designs	will	involve	using	the	digital	I/O	pins	in	output	mode	so	the	questions	are	primarily	directed	at	using	them	
correctly.		For	the	robot	cars	you	will	need	to	turn	the	motors	on	and	off	in	response	to	other	inputs	to	steer	the	vehicle.		As	you	
will	see	by	turning	these	digital	output	pins	on	and	off	really	quickly	you	can	also	control	the	speed	of	the	motors.			

Instead	of	beginning	with	controlling	your	motors	let’s	begin	by	turning	ON	and	OFF	an	RGB	LED.		The	RGB	LEDs	come	in	two	
flavors	the	Common	Cathode	and	the	Common	Anode.		Cathode	and	Anode	–	interesting	jargon	used	to	denote	the	positive	and	
negative	terminals	of	devices	NOT	necessarily	respectively.		In	general	the	current	enters	the	anode	exits	through	the	cathode	as	
looking	from	OUTSIDE	the	device.		To	begin	you	must	determine	which	type	you	have	in	your	kit.	

	

	

Notes:	
 Determine	which	configuration	you	have	by	determining	the	common	pin	(either	anode	or	cathode)	Question	1:

and	inserting	one	of	the	diodes	(red,	green,	or	blue)	across	3.3V	in	both	orientations	remembering	that	diodes	
only	conduct	current	when	the	voltage	at	the	+	terminal	is	sufficiently	greater	then	that	at	the	–	terminal.		Once	
you	know	draw	on	the	physical	diagram	below	how	the	power	and/or	ground	should	be	connected.		Use	the	
schematics	on	the	previous	page	as	a	guide.		NOTE:	The	common	pin	is	not	connected	in	the	diagram	below	and	I	
believe	it	is	the	shortest	pin.	

	

	

	

	

	

		

	

	

	

	

	

	

	

Notes:	
To	make	the	LED	turn	on	you	need	to	apply	enough	voltage	across	the	terminals.	To	turn	the	LED	on	and	off	the	voltage	across	
its	terminals	must	go	high	and	low.		This	is	where	the	digital	I/O	pins	on	the	Arduino	become	useful.		A	program	running	on	the	
Arduino	board	that	raises	and	lowers	the	voltage	on	one	of	the	I/O	pins	is	simple	to	write.	

	

ü Run	the	Arduino	program	on	the	computer	that	will	be	used	to	download	the	program	and	power	the	board.	
ü By	default	a	window	will	open	with	an	empty	Sketch.	

	
	
	
	
	
	
	

o Setup	code	to	designate	Pin	11	as	a	digital	output	pin.		Since	these	pins	can	be	either	input	or	output	a	special	
statement	is	needed.		Amend	the	code	(see	below).		NOTE:	syntax	and	semicolon	at	the	end	of	the	line.	
	
	
	
	
	
	
	

o Turn	on	one	of	the	LEDs	–	the	one	connected	to	pin	11	whichever	that	is	by	telling	the	microprocessor	to	
connect	Pin	11	to	5V.		There	are	two	versions	of	the	code,	one	for	the	common	anode	RGB	LED	and	one	for	the	
common	cathode.		Refer	to	the	schematic	to	determine	which	you.		Or	trial	and	error	works	too.	
	
	
	
	

	

	

Notes:	

ü Upload	code	to	your	Arduino/RedBoard	

Electric Characteristics of the Output Pins
	

 Measure	the	voltage	delivered	by	Pin	11.		All	of	the	voltages	on	the	Arduino	are	referenced	to	the	pins	Question	2:
labeled	GND.		What	is	the	voltage?		Is	LED	on?		Is	it	red,	green,	or	blue?	

 Modify	the	code	and	upload	it	to	the	board	so	that	the	statement	in	the	loop	portion	of	the	code	sets	Question	3:
pin	11	LOW	instead	of	HIGH.		Measure	the	voltage	delivered	by	Pin	11?		Is	the	LED	on?		Is	it	red,	green,	or	blue?	

 Include	statements	that	allow	you	to	control	the	other	2	diodes	that	are	connected	to	pins	10	and	9.		Question	4:
Remember	to	set	them	into	output	mode	in	the	setup	section.		Experiment	with	the	different	combinations.		
What	are	all	of	the	colors	that	you	can	get	by	simply	turning	the	Red,	Green,	and	Blue	diodes	in	eight	different	
configurations?	

	 	

	

Notes:	
Controlling the digital outputs
	

With	only	two	additional	statements	you	can	control	the	LED	by	turning	each	on	and	off	at	different	intervals.		In	this	way	you	
can	obtain	over	16	thousand	different	colors.		The	first	statement	that	can	be	used	is	the	universally	useful	delay	function.	

ü Modify	your	code:	
			
	
	
	
	
	

	

	

	

	

	

 Predict	the	behavior	of	the	circuit.	Question	5:

 Through	the	parameter	passed	to	the	delay	functions	you	have	control	over	the	time	that	the	LED	is	Question	6:
ON	and	OFF.	Experiment	with	values	between	1-1000	keeping	the	parameter	passed	to	the	delay	both	functions	
the	same	for	now.		At	what	value	are	your	eyes	no	longer	able	to	see	the	LED	turn	on	and	off.		This	may	be	
different	for	each	of	you.	

	

Notes:	
With	the	ability	to	delay	the	execution	of	statements	you	have	gained	control	of	the	timing	of	the	circuits	attached	to	the	
digital	outputs.		A	common	method	for	controlling	attributes	of	circuits	that	respond	to	the	average	flow	of	power	is	called	
Pulse	Width	Modulation	(PWM).		The	LEDs	are	one	such	device	and	your	motors	are	another.	

Pulse	Width	Modulation	uses	a	square	wave	with	a	period	chosen	that	works	best	with	the	device/circuit	it	is	connected	to.		By	
varying	the	duty	cycle	of	the	signal	you	can	control	the	brightness	of	the	LED	or	the	speed	of	the	motors.		The	brightness	of	the	
LED	is	not	related	to	the	behavior	of	the	device,	at	least	at	the	speeds	that	you	are	using	to	turn	the	device	on	and	off,	it	is	
turning	all	the	way	off	and	all	the	way	back	on.		It	is	your	eye	that	does	the	averaging.		When	we	use	this	method	with	the	car	
motors,	it	is	the	motors	that	coast	during	the	off	time	slowing	down	that	over-all	average	speed	of	the	motor.	

Constructing a Pulse Width Modulated Signal
	

 Since	you	found	the	value	where	your	eyes	are	unable	to	see	the	LED	turn	on	and	off,	what	is	the	Question	7:
largest	period,	or	lowest	frequency	for	the	PWM	signal	so	that	your	eye	sees	a	steady	brightness	from	the	LED.	

The	signal	generated	on	pin	11	is	now	a	square-wave	with	a	50%	duty	cycle.		The	next	questions	have	you	construct	square	wave	
signals	with	the	SAME	period	–	10	microseconds	will	be	used	–	but	a	varying	duty-cycle.		The	period	chosen	is	an	arbitrary	
number	that	is	fast	enough	so	that	your	eye	can	not	see	the	flicker	and	–	well	its	100	not	117.		NOTE:	In	the	parlance	of	the	
signal	generator	this	is	a	100	Hz	square-wave	with	peak-to-peak	voltage	of	5V	and	a	2.5V	offset.	

 Set	the	value	in	the	delay	functions	both	to	5,	a	value	that	should	be	above	the	one	you	found	in	Question	8:
Question	7.		The	LED	should	not	be	blinking	but	should	be	steadily	on	to	your	eyes.		Vary	the	value	of	the	value	
passed	to	the	delay	following	the	digitalWrite	function	that	sets	turns	on	the	LED	connected	to	Pin	11	from	5	to	1	
–	a	couple	of	values	should	be	enough	to	get	the	trend	in	behavior	of	the	LED.		Since	you	want	to	keep	the	total	to	
remain	10	adjust	the	value	of	the	other	delay	function	to	compensate.	Describe	what	happens.	

	

Notes:	
 	Reset	the	value	in	the	delay	functions	both	to	5.		Now	vary	the	value	of	the	value	passed	to	the	delay	Question	9:

following	the	digitalWrite	function	that	sets	output	on	Pin	11	LOW	from	5	to	1.		Again,	since	you	want	to	keep	the	
total	to	remain	10	adjust	the	value	of	the	other	delay	function	to	compensate.	Describe	what	happens.	

 Make	an	educated	guess	about	how	the	voltage	varies	with	time	using	a	sketch	for	3	different	pairs	of	Question	10:
delays.	The	dashed	line	is	a	square	wave	with	a	10	microsecond	period	as	a	reference.	Put	as	much	detail	as	you	
can.		Voltage	levels.	Time	dependence.		Make	your	best	guess	as	you	will	be	checking	it	in	the	next	section	of	
these	procedures	with	the	oscilloscope.		

	

	

Notes:	
From	the	experimenting	you	have	done	so	far	it	should	be	clear	that	the	voltage	signal	that	is	driving	the	LED	varies	with	time.		
It	is	always	a	good	habit	to	check	that	the	signals	you	generate.			

	

ü Connect	the	oscilloscope	to	measure	the	voltage	across	the	LED	setting	the	values	of	the	delay	functions	to	match	the	
values	used	for	one	of	your	sketches	you	made	for	Questions	10.	

	

 Make	corrections	to	you	plots	you	drew	if	needed	based	on	what	the	oscilloscope	shows.		Notate	on	Question	11:
the	sketch	the	behavior	of	the	LED.		

	

	

	 	

	

Notes:	
There	is	a	shortcut	to	creating	square	wave	pulses	without	resorting	to	manually	setting	the	time	the	output	signal	is	high	and	
low	if	all	that	you	want	is	a	square	wave	with	a	FIXED	period	but	a	variable	duty	cycle.		The	Arduino	instruction	set	includes	a	
special	function	analogWrite	to	generate	a	very	clean	square	wave	with	a	variable	duty	cycle.	

	

ü Make	a	new	Sketch	–	to	be	on	the	safe	side	save	the	new	sketch	to	a	filename	of	your	choice.		Now	all	of	the	edits	will	be	
to	this	new	file.	

ü Enter	this	code:	
	
	
	
	
	
	

ü Upload	the	new	program	to	the	board.	
ü Look	on	the	board	at	the	pins	labeled	DIGITAL	(PWM~).		The	pins	with	the	~	next	to	their	number	are	the	only	ones	that	

can	be	used	with	the	analogWrite	function.		Luckily	pin	11	is	one	of	those	pins.		Your	LED	should	be	on.	
ü Monitor	the	voltage	across	the	LED	with	the	oscilloscope.	

NOTE:		

i. The	analogWrite	function	DOES	NOT	need	the	digital	I/O	pin	to	be	set	up	in	OUTPUT	mode.	
ii. Two	parameters	are	needed.		The	first	is	the	pin	number	to	control	and	the	second	is	related	to	a	parameter	associated	

with	the	resulting	square	wave	output.		You	will	determine	its	purpose	empirically	but	your	probably	already	know	its	
purpose.	

 On	a	new	graph	draw/plot	the	waveform	available	on	Pin	11	from	the	oscilloscope–	notate	the	Question	12:

	

Notes:	
amplitude,	period,	and	duty	cycle.	

 Now	vary	the	second	number	from	128	to	64.		What	changed	about	the	resulting	signal	and	what	did	Question	13:
not.	

 Without	experimenting	guess	purpose	of	the	second	parameter	and	the	range	of	values.		Try	both	Question	14:
setting	it	to	0	(which	is	the	minimum)	to	the	maximum	value	you	just	guess	to	see	if	you	are	correct.	

ü Add	two	analogWrite	statements	to	the	program	to	control	the	brightness	of	the	other	two	LEDs.		Set	the	second	
parameter	to	different	values	for	all	three	–	the	red,	green,	and	blue	to	see	all	the	colors	you	can	make	with	different	
amounts	of	red,	green,	and	blue.	

 (Optional)	Google	html	colors,	and	locate	the	hexadecimal	number	associated	with	your	favorite.		The	Question	15:
first	two	digits	correspond	to	the	amount	of	red	in	the	color.		The	second	two	–	the	amount	of	green.		The	third	–	
blue.	RGB.		Each	pair	of	hexadecimal	digits	can	be	turned	into	a	decimal	number	between	0	and	254	–	how	
convenient.		Formula:	16*(most	significant	digit)	+	(Least	significant	digit).		See	if	you	can	recreate	some	of	the	
colors.	

	

Notes:	
What	if	the	motors	on	your	car	were	connected	in	the	same	manner	to	the	same	digital	outputs.		The	physics	of	the	process	is	
different.		The	brightness	of	the	LED	changes	in	response	to	a	signal	that	is	turned	ON	and	OFF	quickly	because	of	the	response	
time	of	your	eye.		The	motors	cannot	start	and	stop	instantaneously	so	a	similar	method	can	be	used	to	control	their	speed.		
Instead	of	the	averaging	happening	in	your	eye	it	happens	in	the	energy	exchange	in	the	motor	itself.

 Describe	using	the	LED	as	an	example	how	you	would	use	this	method	to	control	the	motor	of	the	cars.		Question	16:
You	will	experiment	with	this	method	–	commonly	referred	to	as	Pulse	Width	Modulation	-	in	a	future	lab.	

