
Name/NetID:																																															Teammate/NetID:	

EXPERIMENT #4: Arduino as Signal Generator

Laboratory Outl ine
In	our	continuing	quest	to	access	the	development	and	debugging	capabilities	of	the	equipment	on	your	bench	at	home	–	
Arduino/RedBoard	as	signal	generator.		If	you	have	followed	the	progression	of	the	–	Arduino	as	Bench	Equipment	–	modules	
you	should	now	be	able	to	supply	3.3V,	5V,	and	the	battery	voltage	to	external	circuitry	and	to	use	the	analog	input	pins	to	read	
voltages	at	different	points	in	a	circuit.	

Using	the	Digital	Input/Output	(I/O)	pins	you	can	craft	a	time-varying	signal.		Since	the	outputs	are	digital	the	voltage	signal	is	
either	5V	or	0V	so	the	resulting	signal	is	a	train	of	pulses	of	–	a	square	wave.		A	very	useful	signal	that	is	easily	generated	by	the	
Arduino	with	only	a	single	statement	is	a	square	wave	with	a	fixed	period	and	a	variable	duty	cycle.		Pulse	Width	Modulation	is	a	
technique	that	uses	the	variability	of	the	duty	cycle	to	control	the	behavior	of	circuit	components	like	the	brightness	of	an	LED	or	
the	speed	of	rotation	of	a	DC	motor.	

	

	

	

Notes:	

The Digital Output Pins on the Arduino/RedBoard
There	are	14	pins	available	that	are	digital	pins	and	can	be	configured	as	either	Inputs	or	Outputs.		The	distinction	between	
analog	and	digital	refers	to	the	nature	of	the	voltages.		All	voltages	are	analog	in	the	sense	that	they	are	continuous	in	time	and	
can	vary	in	value.		What	distinguishes	a	digital	signal	is	that	the	voltages	are	assumed	to	take	one	of	two	values.		For	the	
hardware	on	the	Arduino/RedBoard	one	value	is	0V	designated	LOW	when	setting	the	output	levels	in	the	code,	and	5V	
designated	HIGH	in	the	code.		The	digital	output	pins	are	very	good	at	providing	a	reliable	digital	signal	with	only	these	2	possible	
voltages.		On	input,	since	the	board	has	no	control	over	the	external	signals	connected	to	a	digital	input	pin,	the	distinction	is	
more	complicated	so	that	a	range	of	voltages	are	considered	to	be	LOW	and	a	separate	range	is	considered	to	be	HIGH.	

	

	

	

	

	

	

	

	

Figure	1:	Physical	layout	of	the	RedBoard.	

	

	

	

Notes:	

Generating a Square Wave
Using	a	very	simple	program	you	can	generate	a	variable	duty	cycle	square	wave	on	any	of	the	digital	pins	marked	with	a	~	next	
to	the	pin	number.		Because	a	common	use	for	these	signals	is	to	control	the	behavior	of	devices	like	the	motors	where	the	
speed	is	directly	proportional	to	duty	cycle	the	pins	with	the	~	are	labeled	PWM	or	Pulse	Width	Modulation.		You	will	use	this	
method	in	a	later	lab.	

 Which	of	the	digital	pins	can	be	used	to	generate	a	square	wave?	Question	1:

	
	
	
	

ü Below	is	the	bare	minimum	code	needed	to	output	a	square	wave	using	the	digital	I/O	pins.		Open	a	new	
‘sketch’	(the	Arduino	calls	new	code	files	sketches)	and	type	in	these	few	statements.	
	
	
	
	
	
	
	
	
	
 This	program	has	no	comments	so	navigate	to	the	Arduino	site	–	arduino.cc.	Using	the	help	section	Question	2:

indicate	purpose	of	the	statements	pinMode	and	analogWrite	by	adding	comments	into	the	code.		Include	a	copy	

	

Notes:	
of	your	results	–	you	may	write	them	if	you	wish	or	print	a	copy	but	they	must	use	the	proper	comment	format.		
Explain	why	the	PinMode	command	is	not	really	necessary.	

	

	

	

ü After	checking	under	the	Tools	menu	that	the	software	knows	which	board	you	are	using	(the	RedBoard	is	a	clone	of	
the	Arduino	Uno)	and	which	COM	port	you	are	using	to	upload	the	program	to	the	board	by	clicking	the										icon	at	
the	top	of	the	window.		NOTE:	When	you	plug	the	USB	cable	into	the	lab	computer	the	associated	COM	port	is	
usually	the	highest	numbered	port.		For	Mac	users	the	USB	communication	ports	are	the	device	file	names.	

 Once	the	program	has	loaded,	using	channel	1	of	the	oscilloscope,	probe	the	voltage	between	the	Question	3:
digital	I/O	pin	9	and	any	of	the	ground	pins	(GND)	on	the	board.		Plot	the	waveform.	

 Modify	the	code	by	changing	the	second	parameter	of	the	analogWrite	function	to	a	different	number	Question	4:
in	the	range	0	–	255.		Plot	the	waveform	on	top	of	the	one	you	obtained	in	Questions	3.	

	

Notes:	
 How	is	the	second	parameter	related	to	the	duty	cycle?		Try	several	different	values.	Draw	a	graph	or	Question	5:

write	a	simple	equation	relating	the	two.	

 There	is	no	parameter	when	using	the	analogWrite	statement	to	specify	the	frequency	of	the	square	Question	6:
wave	because	the	special	hardware	that	generates	the	signal	always	outputs	the	same	frequency.		You	can	only	
change	the	duty	cycle.		What	is	the	period	of	the	square	wave?	

 Now	add	lines	to	the	code	so	that	pin	11	also	outputs	a	square	wave	with	a	duty	cycle	of	50%	and	pin	9	Question	7:
outputs	a	duty	cycle	of	25%.		Using	channel	2	of	the	oscilloscope	probe	the	voltage	between	pin	11	and	another	
GND	pin	or	establish	a	ground	on	the	breadboard.		Plot	both	signals	on	the	same	plot.	

	

	
 Trigger	the	scope	on	channel	1,	then	channel	2	–	you	can	do	that	a	few	times.		Do	both	signals	remain	Question	8:

steady	or	does	one	drift	when	you	change	the	trigger	channel?		You	can	trigger	on	channel	3	to	see	what	
untriggered	signals	look	like.	

	

Notes:	
Somehow	the	hardware	onboard	the	Arduino/RedBoard	synchronizes	all	of	the	PWM	signals	so	that	the	rising	edges	occur	at	
the	same	time	even	though	the	pulse	widths	may	be	different.		This	implies	that	any	of	the	signals	can	be	used	to	trigger	the	
oscilloscope	and	all	of	the	waveforms	should	remain	stationary.		For	our	uses	it	is	probably	not	critical	that	the	waveforms	be	
synchronized	but	many	circuits	do	rely	on	these	signals	to	maintain	strict	timing	constraints.	

Generating a Square-ish Wave
Using	different	code	you	can	generate	a	string	of	pulses	that	can	vary	in	width.		While	the	sequence	is	periodic	because	the	
loop{}	section	cycles	repeatedly,	the	signal	can	be	more	complicated	than	a	square	wave.	

ü Add	the	following	code	segment	anywhere	in	the	loop	{}	section.	
	
	
	
	

ü Upload	the	code	to	the	board	

 What	do	the	statements	digitalWrite()	and	delay()	do?	Question	9:

 Using	channel	3	of	the	oscilloscope	probe	the	voltage	between	pin	13	and	another	GND	pin	or	Question	10:
establish	a	ground	on	the	breadboard.		Be	sure	to	trigger	on	Channel	(or	Source)	3	to	get	a	steady	signal.		Plot	the	
waveform	on	a	new	graph.	

 When	the	oscilloscope	is	triggered	using	channel	3	what	happens	to	the	triggering	of	channels	1	and	2?	Question	11:

	

Notes:	
 What	is	the	period	of	the	new	waveform?	Question	12:

ü Now	insert	this	statement	Serial.begin(9600);		into	the	setup	{}	section	of	the	code.		This	statement	establishes	
communication	between	the	computer	and	the	board	as	in	the	Arduino	as	Voltmeter	module.	

ü Insert	the	following	code	at	the	end	of	the	loop	section.	

	

	

	

	

 This	has	some	new	statements.		What	does	the	for()	statement	do?		Explain	the	purpose	of	the	3	Question	13:
parameters.		Those	of	you	who	know	C	or	C++	you	will	recognize	this	statement.	

 Plot	the	waveform	on	channel	3	on	the	graph	you	just	made	in	Question	9.		How	has	the	new	signal	Question	14:
changed?		Did	the	waveforms	on	channels	1	and	2	change	significantly?	

	

Notes:	
That	is	the	power	of	using	the	pins	that	can	generate	a	square	wave	using	the	pins	marked	with	a	~.		The	processor	generates	
signals	on	these	lines	as	a	response	to	the	analogWrite()	command	that	is	locked	to	an	internal	clock.		Other	statements	can	
be	added	in	the	loop()	section	and	the	timing	remains	fixed.		You	can	do	this	with	the	delays	but	it	requires	the	ability	to	
program	the	board	at	the	assembly	language	level.	

ü Remove	the	for	loop	and	program	up	a	crazy	looking	signal.	

 Plot	it.		Using	this	signal	you	can	get	your	car	to	maneuver	by	turning	the	motors	on	and	off	for	specific	Question	15:
amounts	of	time.		Now	you	can	direct	the	car	along	a	known	path	–	shameless	plug	for	the	Open-Loop	Driving	
Module.	

	

	

