

Step 1. Identify the series

resistances responsible for voltage drops.

Step 2. Apply KVL to equate the sum of the voltage drops to the voltage being divided.

The 1Ω resistor is in series with the 5Ω resistor. This is easier to see after rearranging the sketch as shown in the second schematic.

Voltage V_{1} is in the "reverse" polarity that we typically see it. While this is not inherently a problem, it can lead to confusion in the sign of the final voltage. We will define $V_{3}=-V_{1}$ for the comfort of the aspiring engineering student. Around the loop we get:

$$
\begin{aligned}
& 12-V_{3}-V_{2}=0 \\
& \Rightarrow V_{3}+V_{2}=12
\end{aligned}
$$

Which tells us that 12 V is being divided by the two resistor voltages, V_{3} and V_{2}.

Step 3. Apply VDR.

$$
V_{k}=\frac{R_{k}}{R_{e q}} V
$$

$$
\begin{aligned}
& V_{3}=\frac{1}{1+5} 12=\frac{1}{6} 12=2 V \\
& V_{1}=-V_{3}=-2 V
\end{aligned}
$$

