6. If $v_1 = 0.9 \, \text{V}$, $v_2 = 0.2 \, \text{V}$, $v_4 = 0.4 \, \text{V}$ in the circuit below, what is v_5?
 a. 0.3 V
 b. 0.5 V
 c. 0.9 V
 d. 1.1 V
 e. 1.5 V

7. If $i_2 = 10 \, \text{mA}$, $i_3 = 6 \, \text{mA}$, $i_6 = 4 \, \text{mA}$ in the circuit below, what is i_5?
 a. 0 mA
 b. 8 mA
 c. 12 mA
 d. 16 mA
 e. 20 mA

15. How much power is being absorbed by the 3 Ω resistor if the 6 Ω resistor is absorbing 60 W?
 a. 20 W
 b. 30 W
 c. 60 W
 d. 90 W
 e. 120 W
12. What are the voltages V_I and V_S in the circuit below, if $V_2 = 6\ V$?

a. $V_I = 3\ V$ and $V_S = 3\ V$
b. $V_I = 3\ V$ and $V_S = 9\ V$
c. $V_I = 6\ V$ and $V_S = 12\ V$
d. $V_I = 9\ V$ and $V_S = 15\ V$
e. $V_I = 12\ V$ and $V_S = 18\ V$
12. Find the value of current I.

![Circuit Diagram]

a. 2 mA
b. 4 mA
c. 6 mA
d. 8 mA
e. 12 mA
3. What happens to the energy stored in a capacitor, if the capacitor loses half of its charge, while its capacitance remains the same? (Hint: consider what happens to the voltage across the capacitor)

 a. Stays the same
 b. Decreases to 70% of original
 c. Decreases to 50% of original
 d. Decreases to 25% of original
 e. Decreases to 12% of original

8. Imagine we cook an egg by immersing it into water which is boiled by an electric heater. The heater utilizes a current, I, at a voltage, V, for a time, T. If the change in energy of a newly cooked egg over its raw energy is given by ΔE_{egg}, the energy wasted in the cooking process is given by which equation below?

 a. $E_{wasted} = IV$
 b. $E_{wasted} = IV + \Delta E_{egg}$
 c. $E_{wasted} = IV - \Delta E_{egg}$
 d. $E_{wasted} = IVT + \Delta E_{egg}$
 e. $E_{wasted} = IVT - \Delta E_{egg}$