Pre-lab 8: Pulse Width Modulation

VDR for Motor Control
Motor speed control could be accomplished by using a voltage divider circuit where the motor provides one of the two series resistances. The other series resistance might be assumed to be a variable resistor. The voltage to be divided would be that of your rechargeable battery pack used in lab.

Question 1: Provide a circuit schematic describing this motor-drive scheme.

Question 2: Based on your earlier laboratory measurements of the DC motor used to drive your wheel (Lab 6), what effective resistance R_{mT} will the motor effectively have at a normal operating speed?

Question 3: Based on your earlier laboratory measurements of the DC motor used to drive your wheel, what range of voltages across the motor provide a non-stalled motor speed?
Question 4: Using the range of voltages form the previous question, what range of resistance for R_{pot} should the variable resistor have in order to provide adequate speed control of the wheel?

Question 5: Compute the power consumed by the wheel and the power “wasted” by the variable resistor when the wheel is running at a moderate speed, say, a motor voltage of 5 V.

Question 6: Consider the range of resistances necessary and the power consumed by the variable resistor. Compare this to the specifications of the flex sensor provided in your kit. Why might this method of speed control prove to be difficult if a sensor was needed to provide the variable resistance of the voltage divider.

PWM for Motor Control

Pulse width modulation is the use of a square wave (rather than a constant voltage) with an $A/2$ DC offset such that the voltage goes between 0 (ground reference) and A volts when switching. The “on” voltage, A, will be equal to the voltage of your rechargeable battery used in the lab and will be provided using the transistor in the normal “motor-drive circuit”. When using PWM for motor speed control, we can adjust the duty cycle to provide a different average voltage to the motor and, therefore, adjust the motor speed.
Question 7: Provide a circuit schematic describing the motor-drive scheme described above.

Question 8: Give an equation that represents rms voltage as a function of the peak-to-peak voltage, A, and duty cycle, d.

Question 9: Based on your earlier laboratory measurements (end of lab 7) of the DC motor used to drive your wheel, what PWM duty cycle will the motor effectively need for a normal operating speed? You may assume a battery pack voltage of 7.2 V.

Question 10: Compute the power consumed by the wheel when the wheel is running at a moderate speed.

Question 11: How much power is theoretically “wasted” in this design?