

Step 1. Identify the series

 resistances responsible for voltage drops.Step 2. Apply KVL to equate the sum of the voltage drops to the voltage being divided.

Step 3. Apply VDR.

$$
V_{k}=\frac{R_{k}}{R_{e q}} V
$$

The 1Ω resistor is in series with the 3Ω resistor.

This problem presents us with extra details that are not needed. Once we are provided that the current source has $2 V$ across it, we don't need any more information to apply KVL. Around the loop we get:

$$
\begin{aligned}
& 2-V_{1}-V_{2}=0 \\
& \Rightarrow V_{1}+V_{2}=2
\end{aligned}
$$

Which tells us that $2 V$ is being divided by the two resistor voltages, V_{1} and V_{2}.

$$
V_{1}=\frac{1}{1+3} 2=\frac{1}{4} 2=0.5 \mathrm{~V}
$$

