Use Voltage Divider Rule to find V_1 .

Step 1. Identify the series resistances responsible for voltage drops. The 1 Ω resistor is in series with the 3 Ω resistor.

This problem presents us with extra details that are not needed. Once we are provided that the current source has 2 *V* across it, we don't need any more information to apply KVL. Around the loop we get:

> $2 - V_1 - V_2 = 0$ $\Rightarrow V_1 + V_2 = 2$

Which tells us that 2 V is being divided by the two resistor voltages, V_1 and V_2 .

$$V_1 = \frac{1}{1+3}2 = \frac{1}{4}2 = 0.5 V$$

Answer: $V_1 = 0.5 V$

Step 2. Apply KVL to equate the sum of the voltage drops to the voltage being divided.

Step 3. Apply VDR.

