
Arduino Analog Inputs

Submit only the summary page

Module 005 (previously 4C): Arduino Analog Inputs

Introduction

One of the most powerful features of the Arduino board is its ability to take an analog voltage and convert that analog voltage
into a number – a 10-bit binary number – but don’t worry if you don’t know binary, Ardunio will present this to you as a decimal
number between 0 and 1023. The ability to sample voltages enables you to design projects that interface the real world of sound,
heat, pressure, motion, acceleration, radiation, etc., to the digital world of the Arduino. The “sensor” devices that convert the
properties of the real world to a voltage are part of a general class of devices called transducers. A transducer transforms one
kind of energy into another. You are very familiar with these devices – your own body is full of them. All of the interfaces to your
computer is a transducer of one form or another – the microphone input converts the coherent motion of the air (sound) hitting
the microphone into a voltage that is input to the computer – the speaker output converts the voltage generated by the computer
to sound waves – the computer’s camera inputs electromagnetic radiation in the visible light range from the surrounding
environment and converts the resulting image to a voltage that the computer can then process and store.

The magic hardware that allows the analog and digital world to interface are complex devices – an A/D Converter (Analog-to-
Digital Converter) and a DAC (Digital-to-Analog Converter). The Arduino only has an Analog-to-Digital Converter so you can only
input analog inputs. You cannot create them. Some other platforms like the TI development boards also include a D/A converter.

This module will help you set up a simple experiment that illustrates the hardware and software considerations so that you can
become familiar with the simple statements needed to get a digitized version of the voltage from any analog device/sensor that
works within the electrical constraints of the Arduino.

[Type here]

Arduino Analog Inputs

Procedures

Building a circuit to test
To fully understand the process of reading an analog voltage and use the result to control external circuitry let’s build two circuits.
An input circuit and an output circuit. The input circuit consists of a simple device that can provide a variable voltage to the analog
input pins on the Arduino/RedBoard. The simplest is a tunable voltage divider built using a potentiometer. The output circuit
consists of a simple LED circuit so that it can controlled based on the voltage at the analog input pin.

Input Circuit
Many of the sensors included in your kits are active circuits – made of diodes and/or transistors – that need to be powered to work.
Compare these devices with the sensors where only the resistance changes – these do not need to be powered to work. Interfacing
an active sensor to the Arduino inputs is very simple. Just hook one terminal to an analog input pin and the other to GND. The
GND pins provide a common reference node for the entire board. Interfacing a resistive sensor to the Arduino/ RedBoard requires
a little finesse. How to translate a change in resistance to a change in voltage? A voltage divider circuit.

Using a potentiometer is a simple way to build a voltage divider circuit. The figure below shows the schematic associated with the
potentiometer and the physical part. You have several potentiometers in your kit. The total resistance between the voltage source
Vo and ground is a fixed value R, but it is divided into two separate resistances R1 and R2 inside the potentiometer. This is the
quintessential voltage divider circuit (see sidebar). If the potentiometer knob is turned the values of R1 and R2 change but the
total resistance R = R1 + R2 remains the same. By turning the knob you can vary the voltage at Pin 2.

[Type here]

Arduino Analog Inputs

Answer the following questions, writing the answers on the Summary page (not here).

 What is the maximum and minimum voltage at Pin 2.
 Pretend that the potentiometer is set so that R1 = R2 = R/2. What is the voltage measured

between Pin 2 and ground?
 If the knob is turned so that the resistance R1 increases by a value d so that R1 = (R/2)+d, what is

the voltage measured between Pin 2 and ground?

Build this circuit on a breadboard – note the schematic symbol for the potentiometer. Use the potentiometer that
has a total resistance of 10kΩ. The way you can tell is by looking at the markings on the side (see figure – the 103
means 10 x 103). A suggested layout is shown in the physical layout diagram to the right. As you can see the 5V and
ground connections are provided by the Arduino/RedBoard.

[Type here]

Arduino Analog Inputs

Output Circuit
Build a simple LED circuit that can be controlled using digital output pin 13 on the board to control the behavior of the LED.

Programming the Arduino
The code that you upload to the board will read the voltage on analog input pin A0. Depending on the value of the voltage the
state of the LED will be coded. This is how the feedback from the analog inputs can be used to change the state of other devices
connected to the digital output pins.

 Open a new Sketch in the Arduino IDE. It should give you as always the bare minimum scaffolding.

 Upload and run the program.

[Type here]

Arduino Analog Inputs

Testing and Debugging the Input Circuit

The input and output circuits are built and the Arduino is programmed to read the voltage connected to pin A0. Is it working?
By looking at the code downloaded to the Arduino board and the circuit you built you can describe how it should work. It is
essential that, even in this simple example, you get into the habit of checking that each portion of your design works properly so
let’s start with the input.

At your bench in the lab, you could use the voltmeter to confirm your predictions.

Is the program working? You can fiddle with the potentiometer knob, knowing that you are probably changing the
voltage. Probe the voltage between the analog input pin A0 and one of the GND pins with the multimeter. As you
turn the knob on the potentiometer describe what happens to the voltage.

Is it working? There is no way to tell because the resulting 10 – bit binary numbers that represent the input voltage are not
known and so far we have not connected the output circuitry to monitor the response based on the input voltage. There is a
simple method to monitor any variable while the program is running. In addition to providing the ability to output information
from the board as it runs the program you also gain an invaluable debugging resource. If you are away from the bench and an
oscilloscope, you can still debug the circuit if the Arduino is connected to a computer running the Arduino IDE.

The information is sent through the USB port using a special protocol so that the computer can interpret the information sent
properly. USB is an acronym that means Universal Serial Bus. Universal seems to be appropriate as the interface is ubiquitous.
Serial (as opposed to parallel communication) implies that the digital information is transmitted 1-bit at a time. That is why
serial communication is usually slower than the protocols that send entire words at once. Bus implies a sharing of data signals
between different pieces of hardware. The board actually supports at least three types of serial communication protocols, only
one of which is used by the USB connection.

[Type here]

Arduino Analog Inputs

 Amend the program so that it uses the serial connection provided by the USB cable to provide information about what
the board measures. Do not include the float voltageValue = statement for now.

All of the statements that begin with Serial. are statements accessed from the Serial Communications libraries. The first
statement associated with the serial communication functionality is the Serial.begin(9600) statement. This sets up the serial
port between the computer and the Arduino. The speed of serial connection is specified by the number 9600 – this is not the
only possible speed but is the most common for communications with Personal computers. The rate or units associated with
serial communication is termed baud so the above statement says the interface runs at 9600 baud. What is a baud? The term
Baud hails back to telegraphy when the quintessential serial communications method, Morse Code, was used. Morse code
assigns each letter of the alphabet a sequence of shorter (dots) or longer duration (dashes) voltage pulses. A baud was equal to
sending a single “dot” in one second. A good operator can send upwards of 60 or more words per minute with a word equaling
5 characters. The longest letters are 4 symbols which makes 60 words per minute approximately 1200 symbols per minute or 20
symbols per second. This correlates to speeds of 20 baud or more. The computer communicates at 9600 baud.

The second statement Serial.println(sensorvalue) prints out the numerical value specified as an argument using C/C++
formatting conventions.

???

[Type here]

Arduino Analog Inputs

 Upload this new program (without the voltageValue= statement) to the Arduino and click on the icon that looks like a
magnifying glass located at the top right of all open windows. A new window should pop-up and numbers should appear
(give it a moment) streaming continuously – one per line. This window is often called the console or Serial Monitor.

 Describe what happens to the numbers as you twist the knob on the potentiometer. Specify
the maximum and minimum values you read from the console window when the potentiometer is fully
turned in both directions.

Insert a statement that converts the integer sensorValue to the corresponding voltage. Store this value in a
floating point variable voltageValue. It should look something like this – float voltageValue =
5.*sensorValue/1023.; NOTE: Do not forget the periods after the numbers. If left off, since sensorValue is
an integer the divide by 1023 may result zero which is not what you want. Print it out to the console with a
simple addition to the print statement (see program below).

 Twiddle the potentiometer and watch how the voltage changes on the serial monitor and the
multimeter. How close is the agreement?

Serial.println(voltageValue)

[Type here]

Arduino Analog Inputs

Using the Sampled Data to control the Output Circuit

As you have discovered, the connection to the A0 pin is the “analog” signal varied by turning the knob on the potentiometer
whose continuous voltage range (0-5V). The integer value read from the pin connected to an analog-to-digital converter is used
within the loop section of the program to vary the interval used to turn the LED ON and OFF at a rate dependent on the voltage
of the sampled signal. There are several parameters needed to characterize the A/D process. The dynamic range is the range of
voltage to be sampled – in this case the dynamic range is 5V. The dynamic range would have been the same if the voltages
varied from -1V to 4V. The sampling rate is the frequency at which the samples are obtained – in the case of the Arduino unless
you access the processor directly you are limited to 10Ksamples/sec. The resolution specifies the number of values mapped to
the dynamic range – in this case the voltage range 0-5V is mapped onto the integers 0-1023 in equal intervals.

 What is the voltage range that is mapped onto a single integer interval? For example, if the
Arduino reads a value of 1 from pin A0 what was the voltage input?

Using the LED circuit let’s use the value stored in sensorValue to control the brightness of the LED connected to Pin 13. A single
statement analogWrite(ledPin, dutyCycle); is used to generate a square wave of peak-to-peak amplitude 5V, period 2μs and a
variable duty cycle. The brightness of the LED is directly related to the duty cycle. The problem comes when specifying the duty
cycle. The value stored in variable sensorPin varies between 0-1024, but the value passed to the analogWrite statement
specifying the duty cycle can only vary between 0-255. So the two intervals must be mapped onto one another using a very
simple method – divide the value stored in the variable sensorPin by 1024 reducing the interval from (0, 1024) to (0, 1) then
multiply by 255 to map it onto the interval (0,255). That was easy. It is exactly identical to the equation used to convert the
integer to the actual voltage.

[Type here]

Arduino Analog Inputs

 How would you map the intervals in this case – map an arbitrary interval (a1, a2) to the interval
(0, b2)?

Now let’s control the LED using the analogWrite function to control the brightness of the LED with the potentiometer. The code
is provided below EXCEPT the statement that converts the input associated with potentiometer.

 Complete the statement computing the variable dutyCycle that is passed as the second
argument to the analogWrite function so that the entire range 0-1024 is mapped onto the entire range 0-255
that specifies the duty cycle. Run the program to see if it works. Now turn the potentiometer knob. What
happens?

[Type here]

Arduino Analog Inputs

You have successfully built a working circuit where the feedback between an input circuit and the behavior of the output circuit
is provided by code rather than circuitry.

[Type here]

Arduino Analog Inputs

Name: ____________________

Net ID: ____________________

Summary for Arduino Analog Input
 What is the maximum and minimum voltage at Pin 2.

 Pretend that the potentiometer is set so that R1 = R2 = R/2. What is the voltage measured
between Pin 2 and ground?

 If the knob is turned so that the resistance R1 increases by a value d so that R1 = (R/2)+d, what is
the voltage measured between Pin 2 and ground?

 Describe what happens to the numbers.

[Type here]

Arduino Analog Inputs

 How close is the agreement?

 What is the voltage range that is mapped onto a single integer interval?

 How would you map the interval (a1, a2) to the interval (0, b2)?

 What happens?

	Introduction
	Procedures
	Building a circuit to test
	Input Circuit
	Output Circuit
	Programming the Arduino
	Testing and Debugging the Input Circuit
	Using the Sampled Data to control the Output Circuit

	Summary for Arduino Analog Input

