Use Voltage Divider Rule to find V_1.

Step 1. Identify the series resistances responsible for voltage drops.

The 1 Ω resistor is in series with the 3Ω resistor.

This problem presents us with extra details that are not needed. Once we are provided that the current source has 2 V across it, we don’t need any more information to apply KVL. Around the loop we get:

$$2 - V_1 - V_2 = 0$$

$$\Rightarrow V_1 + V_2 = 2$$

Which tells us that 2 V is being divided by the two resistor voltages, V_1 and V_2.

$$V_1 = \frac{1}{1 + 3} \cdot 2 = \frac{1}{4} \cdot 2 = 0.5 \, V$$

Answer: $V_1 = 0.5 \, V$