Approx Nearest Neighbor Search in High Dims Problem Given n pts P in Rd, build data structure s.t. given query pt $q \in \mathbb{R}^d$ can find $p \in P$ minanion d(R9). Enclidean: (\$\frac{1}{2} (\rangle i - qi)^2 (1: \frac{1}{2} (\rangle i - qi)^2 Los: max / Pi-90/ Known: 4=2: O(n) space, O(logn) time by PC. larger const d: 4/Las: O(n logan) space, O(logan) query O(n^{rd/21}) space, O(logn) true or O(n) Space, O(n^{1-rd/21}) time terrible for large of! Relax problem: given $q \in \mathbb{R}^d$, find pet st. $d(p,q) \leq c \cdot \min_{p \in P} d(p',q)$ approximation factor

	•
given $q \in \mathbb{R}^q$,	
return some pt per with d(e,q) < cr	
or declare all pts pEP with d(P.9)> r. a	
(original prob can be solved by approx binary search	
extra factor (og U)	
try all r = (1+E), (i=0,; log 11E)	
Matter Cond	
Method O: Grid	
form uniform grid of side length Er/VI	
ctaco C = all nonemotic	
dicharants Store S = all nonempty gnicels	
query(9):	
check if any grid cell	
Intersecting ball(9,1) Eight	
15 10 5	
by hadrie trie all 13 113 2 (1+Er = (1+E)r with a grid all 13 113 2 (1+E)r	
by hadre trie all 1 te approx factor (ItE)1 which per grid all 1 te approx factor (ItE)1	
	(1)
query time O (# grid cells instersecting ball(9,	, ' <i>'</i>
$\leq O\left(\frac{\varepsilon Mq}{s_L}\right)_q$	
$= \left \bigcirc \left(\underbrace{2}_{\mathbf{G}} d \right) \right \leq \mathbf{m} ^{2}$	
(0(1)	4

Johnson-Lindenstrass Lemma (184)

For n pts P in \mathbb{R}^d , for Euclidean, (or Lindenstrass for P = \mathbb{R}^k , s.t. \mathbb{R}^d , s

(Pf: take a random projection f)
Chernoff bd...

h(sen

K. 1.1

Chernoff bd . . .

(ablogn = bloga)

Space
$$\frac{O(1)}{S}$$
 $O(\frac{1}{2} \log n)$

$$= \frac{O(\frac{1}{2} \log \frac{1}{2})}{O(\frac{1}{2} \log n)}$$
Query $O(\frac{1}{2} \log n)$

no exponential in d!

Method 2: Locality-Sensitive Hashing (LSH) (Indy K, Motwani 198)

idea - if p,q are close, more likely that h(p)=h(g)

Consider Special case of Hamming space {0,1}d given p, 9 ∈ {0,139,

define d(P,q) = # bit positions that are diff.

eg. p= (0()(0) d(p,q)=2.

Will solve approx deas problem for fixed , approx

Proproc Algin: let k be param. define hash for h: $\{0,1\}^d \rightarrow \{0,1\}^k$ by projecting to k rand dims eg. $p = \{0,1\} = \{0,1\}^k$ $\{0,1\}^k$ by projecting to k rand dims $\{0,1\}^k = \{0,1\}^k$ $\{0,1\}^k = \{0,1\}^k$ by projecting to k rand dims $\{0,1\}^k = \{0,1\}^k = \{0,1\}^k$ $\{0,1\}^k = \{0,1\}^k =$

Quary (9): if each $p \in P$ is bucket for h(9) if $d(p,9) \leq cr$ return p return no

Prop $\forall P, q \in \{0,1\}^d$, $Pr[h(e) = h(q)] = (1 - \frac{d(p,q)}{d})^k$ eg. p = 100110001 h(e) = 010 eg. q = 100110001 h(q) = 010 eg. q = 2.