Let \(L(u) \) = original y-sorted list at node \(u \) will generate an "augmented list" \(L^+(u) \). Define \(\text{sample}(L) \) = sublist of \(L \) formed by taking 1 out of every \(b \) elements.

For each child \(v \) of \(u \),
let \(L^+(v) = \text{sample}(L^+(u)) \)
store succ ptrs between \(L^+(v) \) and \(\text{sample}(L^+(u)) \)
& succ ptrs between \(L^+(v) \) and \(L(v) \)

If we know succ of \(q \) in \(L^+(v) \),

- Know succ of \(q \) in \(L(v) \).
- Know succ of \(q \) in \(\text{sample}(L^+(u)) \)
 \(\Rightarrow \) know succ of \(q \) in \(L^+(u) \)
 by additional \(O(b) \) comparisons.

Repeat at \(u \)

\[\text{query time } O(\log n + (\log n) \cdot O(1)) = O(\log n) \]

\[\text{Space } O\left(\sum_{u \in L^+(u)} L(u) \right) = O\left(\sum_{u \in L^+(u)} \left(1 + \frac{2}{b} + \left(\frac{2}{b} \right)^2 + \ldots \right) \right) \]

\[= O\left(\sum \left| L(u) \right| \right) \]
\[b^2 = \mathcal{O} \left(\sum_u |L(u)| \right) = \mathcal{O}(n \log n) \]

Method 3: Persistent Search Tree (Samak-Tarjan '86)

- Go back to Method 1
- Slab sweep from left to right
- Maintain y-sorted list \(L \)
 - If we hit left endpt:
 - Insert to \(L \)
 - If right endpt:
 - Delete from \(L \)
- Store \(L \) in BST

To answer query for pt \(q \):
- Find slab \(\sigma \) containing \(q \) by x-binary search
- Do pred search in the version of \(L \) for \(\sigma \)

Persistent data structure - ability to query in past versions.

One implementation of persistent BST:
One implementation of persistent BST:

Path copying:

Query time: $O(n \log n)$

Space: $O(n \log n)$

We create $O(n \log n)$ new nodes per insert/delete.

2nd implementation: no path copying

Allow node to get "fat"
Store timestamps for ptrs

Space: $O(n)$

If we use BST with $O(1)$ amortized update time,

Query time: $O(n \log n + \log n \cdot \log n) = O(n \log^2 n)$

Or with VEB trees
Sarnak–Tarjan: limited path copying

allow node to get ‘full’ with up to \(b \) slots

\[\text{copy when full} \]

\[\Rightarrow \text{query } O(\log n) \]

\[\text{Space } O(n) \]

by some potential analysis

(even for \(b=1 \))