Problem: Point Location

given planar subdivision with n vertices
build data structure s.t.
given query pt q, find region containing q
equiv: find line segment immediately above q

by Euler's formula,
edges/ faces = $O(n)$

App.: nearest neighbor search in 2D

Method 0:
divide into n vertical slabs
store y-sorted list in each slab

\(\Rightarrow \) query time \(O(\log n + \log n) \)
\(\text{binary search in } x \)
\(\text{binary search in } y \)

Space \(O(n^2) \)
preproc time \(O(n^2 \log n) \)

Method 1: Segment Tree

given \(n \) disjoint line segments intersecting slab \(\sigma \),

divide by median \(x \)
remove all long segs in \(\sigma \)
& store them in y-sorted list
recurse in left & right

Def
segment \(S \) is long \(\in \sigma \)
if it completely cuts across \(\sigma \).
Query algm, for query pt q:
find long seg immediately above q by binary search
if q left of median x
 recurse left
else recurse right
return lowest seg found.
Binary searches at $O(\log n)$ nodes along a path
$O(\log^2 n)$ Query time

How to speed up query?
Issue: parent list & child list not related...

Method 2: Segment Tree + “Fractional Cascading”
(Chazelle, Guibas ’86)

Idea: pass a $\frac{1}{b}$ fraction of parent list to child list

$b = 3$
Let $L(u)$ = original y-sorted list at node u
will generate an “augmented list” $L^+(u)$
Define $\text{sample}(L)$ = sublist of L formed by
taking 1 out of every b elements.
for each child v of u,
let $L^+(v) = L(v) \cup \text{sample}(L^+(u))$
store succ ptrs between $L^+(v)$ and $\text{sample}(L^+(u))$