Insert: $O(\log n)$ (up a path)
Delete-min: $O(\log n)$ (down a path)
Increase-key, Decrease-key: $O(\log n)$ (up a path)
Preprocess: $O(n)$

Lower bounds:
- n inserts/deletes-mins require $\Omega(n \log n)$ time in comparison model by reduction from sorting.

Q: Faster `insert`? `decrease-key`?

Binomial Heaps (Vuillemin ’78):
- `find-min`: $O(1)$
- `insert`: $O(1)$ (amortized)
- `delete-min`: $O(\log n)$

Fibonacci Heaps (Fredman-Tarjan ’85):
- `decrease-key`: $O(1)$ (amortized)

[applies to Dijkstra’s algo n delete-mins, m decrease-keys $\Rightarrow O(n \log n + m)$]

Other alternatives:
- Takaoka ’03: “2-3 heaps”
- C’09: “quake heaps”
- Brodal ’96: worst case
- Pairing Heaps: simplified Fibonacci heaps but poorer guarantees

Tournament Tree Approach:
allow multiple tournament trees (forest)

insert(x): // be lazy!
 just create a new tree for \{x\}

delete-min U:
 \(X = \text{min} \) of all the roots
 remove path of \(X \)'s nodes
 whenever \(\exists 2 \) trees of same height
 link them

at end, \(\leq \log n \) trees

Amortized Analysis:

define potential \(\Phi = \# \text{trees} \)

for each insert:
 change in \(\Phi \) = +1
 runtime = \(O(1) \)
 \(\leq O(2 - \text{change in } \Phi) \)

for each delete-min:
 let \(t = \# \text{trees before} \)
 change in \(\Phi \) \(\leq (\log n) - t \)
 runtime = \(O(t + \log n) \)
 \(= O(2 \log n - \text{change in } \Phi) \)

total time for \(n \) inserts \& \(n \) delete-mins
total time for \(n_I \) inserts & \(n_D \) delete-mins
\[
\leq O(2n_I + (2\log n)n_D - \text{total change in } \Phi)
\]
(find \(\Phi \) - initial \(\Phi \))
\[
\leq O(n_I + (\log n)n_D)
\]
\[
\Rightarrow \text{ insert } O(1) \text{ amortized}
\]
\[
\Rightarrow \text{ delete-min } O(\log n)
\]

What about decrease-key\((x)\)?

basic idea - cut subtree at \(x \)
\(x \) is now a root
- can decrease key trivially!

but tree may have deg-1 nodes
& unbalanced.

Solution 1 - 2-3 Heaps (Takaoka)

\(\text{Invariants} \quad \text{all nodes have deg } 2 \text{ or } 3 \)
\(\text{All leaves in same tree have same depth} \)

Whenever 3 deg-1 node \(v \)
- fuse \(v \) with its sibling
- split if deg \(\leq 4 \)
Amortized Analysis:

New potential \(\Phi = \# \text{trees} + \# \text{nodes} \)

insert: \(O(3 - \Delta \Phi) \)

delete-min: \(O(2 \log n - \Delta \Phi) \)

decrease-key:
 \[\Delta \Phi = -(f - 1) + 1 \]
 \(f = \frac{\# \text{fuses}}{\# \text{nodes}} \)
 \((\# \text{trees}) \)

\[\text{time} = O(1 + f) \leq O(3 - \Delta \Phi) \]

Total time for \(n_I \) insert, \(n_D \) delete-min, \(n_{DK} \) decrease-key

\[\leq O(3n_I + (2 \log n) n_D + 3n_{DK} \) - total \(\Delta \Phi \)
 \(\frac{\Phi_{\text{final}} - \Phi_{\text{init}}}{O} \)

\[\leq O(n_I + (\log n) n_D + n_{DK}) \]

insert \(O(1) \)

delete-min \(O(\log n) \)

decrease-key \(O(1) \) \} amort.

Solution 2 - Fibonacci heaps \(\Rightarrow \) cascading cuts

skipped

Solution 3 - Quake heaps

Idea - be lazy + clean up once in a while
(Invariant:)
- All nodes have deg 1 or 2
- All leaves in same tree have same depth

\[n_{i+1} \leq \alpha n_i \quad \implies \quad \text{global balance constraint} \]

\[\frac{\text{# nodes at height } i+1}{\text{# nodes at height } i} \leq \alpha \]

\[\Rightarrow \quad \text{height } O\left(\log_{1/\alpha} n\right) \]

No fuse etc.

Sesmic event whenever \(n_{i+1} > \alpha n_i \) \(\implies \) just remove all nodes at height > i

Amortized Analysis:

New potential \(\Phi = \text{#trees} + \text{#nodes} + \frac{1}{2\alpha-1} \text{(deg-1 nodes)} \)

Insert: \(O(3 - \Delta \Phi) \)
Delete-min: \(O\left(O\left(\log n\right) - \Delta \Phi \right) \) ignoring clean-up

Decrease key: Say \(n_{i+1} > \alpha n_i \).

\[\Delta (\text{#trees}) \leq + n_i \]
\[\Delta (\text{#nodes}) \leq - n_{i+1} - n_{i+2} - \cdots \]
\[\Delta (\text{deg-1 nodes}) \leq + 1 - (2n_{i+1} - n_i) \]
\[\leq + 1 - (2\alpha - 1) n_i \]

\[\Rightarrow \quad \Delta \Phi \leq + 1 - n_{i+1} - n_{i+2} - \cdots \]
runtime $O(1 + n_{i1} + n_{i2} + \ldots)$

$\leq O\left(2 - \frac{\Delta \Phi}{\gamma}\right)$

\Rightarrow decrease-key $O(1)$ amortized.

delete-min $O(\log n)$

insert $O(1)$