\[\Rightarrow \text{height} \leq \log n \]

query: still \(O(\log n) \)

insert: whenever \(\deg(v) = b+1 \) for some \(v \):

split \(v \) into 2 nodes of \(\deg \approx \frac{b+1}{2} \)

\[\Rightarrow \quad O(\log n) \text{ splits (up a path)} \]

\[\Rightarrow \quad O(\log n) \text{ time.} \]

delete: whenever \(\deg(v) = a-1 \) for some \(v \):

fuse \(v \) with sibling & split if \(\deg > b \)

\[\Rightarrow \quad O(\log n) \text{ fuses} \]

\[\Rightarrow \quad O(\log n) \text{ time} \]

Rumk - useful in external memory: "B-tree"

- 2-3-4 trees related to red-black trees

- related to "skip lists" & random

Q: insert & delete in \(O(1) \) time??

(given ptr to elem)

Def: We say op takes \(O(T) \) \text{ amortized time}
Def We say op takes $O(T)$ amortized time if any sequence of n ops takes total worst-case time $O(nT)$.

Starting with initially empty DS.

Claim (a,b)-tree has $O(1)$ amortized insert time if no deletions.

PF: Consider any seq of n ops.

$$\text{total time} = O(n + \#\text{splits})$$

$$\leq O(n + \#\text{internal nodes})$$

$$\leq O(n).$$

Claim (a,b)-tree has $O(1)$ amortized insert & delete time if $a \approx \frac{b}{4}$.

PF Sketch:

- **Insert**: \Rightarrow \\
- **Delete**: \Rightarrow

\[
\# \text{splits/fuses at depth } i \leq \frac{\# \text{splits/fuses at depth } i+1}{b/8}
\]

\[
N_i \leq \frac{N_{i+1}}{b/8}
\]

$h = \text{height of tree}$
\[N_i \leq \left(\frac{\alpha^n}{(b/8)^{n_i}} \right) \]

\[\text{total } O\left(\sum_{i=0}^{n-1} \left(\frac{\alpha^n}{(b/8)^{n_i}} \right) \right) = O(n) \]

Method 4
Weight-balanced trees or BB[\alpha] tree
(Nievergelt–Renzigold '70)

(very general)

Invariant: for each node \(v \),
- \(\text{size(left}(v)) \leq \alpha \text{size}(v) \)
- \(\text{size(right}(v)) \leq \alpha \text{size}(v) \)

Site of Subtree rooted at \(v \)

\[\alpha^{\text{height}(v)} \geq \text{const} \]
\[\frac{\alpha^n}{(b/8)^{n_i}} \approx n \]

\[\Rightarrow \text{height } O\left(\log \frac{n}{\alpha} \right) \]

Whenever invariant is violated at some node \(v \),
rebuilt subtree at \(v \)
with perfectly balanced tree

worst-case: \(O(n) \quad \text{BAD!} \)

amortized?

Define potential \(\Phi = \sum \left(\text{size(left}(v)) - \text{size(right}(v)) \right) \)
In insert/delete, \(\Phi \) increases by \(O(\log n) \).

If rebuild at \(u \), runtime is \(O(\text{size}(u)) \).

But \(\Phi \) decreases by

\[
\geq (\alpha \cdot \text{size}(v) - (1 - \alpha) \cdot \text{size}(u)) - O(\Phi_{\text{before}})
\]

\[
= \Omega(\text{size}(v)).
\]

Total rebuild time \(\leq O(\text{total decrease in } \Phi) \)

\(\leq O(\text{total increase in } \Phi) \)

Amortized cost \(\leq O(\log n) \).