Problem (Dynamic Predecessor Search)

build data structure for n numbers \(S = \{a_1, \ldots, a_n\} \)
to support:

- pred search: given \(q \), find largest \(a_i \in S \) less than \(q \)

query

- (succ similar)

update

- insert an elem to \(S \)
- delete \(\cdots \) from \(S \)

Method 0

sorted array

query time \(\mathcal{O}(\log n) \) by binary search

Space \(\mathcal{O}(n) \)

preproc time \(\mathcal{O}(n \log n) \)

but insert/delete \(\mathcal{O}(n) \) \(\leftarrow \) bad

Method 1

binary search tree (BST)

query: can still use binary search

insert: straightforward

in order: replace with pred/succ
Inert: straightforward
delete: replace with pred/succ

\[\text{time } O(\text{tree height}) \]
but height may be \(\Omega(n) \) in worst case!

\[1, 2, 3, 4, \ldots \Rightarrow \text{need balanced search trees!} \]

Method 2: AVL Tree (Adelson-Velsky, Landis '62)
(sketchn only)

Invariant:

\[\text{at every node } v, \]
\[|\text{height}(L_v) - \text{height}(R_v)| \leq 1. \]

\[\Rightarrow \text{height } \leq \log_\phi n \]
\[\phi = \frac{1 + \sqrt{5}}{2}. \]

\[F_h = F_{h_2} \quad \uparrow h \]

basic primitive: rotation

\[\text{right-rotate} \]

\[x \quad \downarrow \]

\[y \]
insert: 4 cases ... (messy)
delete: 4 cases ...

all ops $O(\log n)$ time

Other balanced BSTs:
- red-black tree (Guibas-Sedgewick '78)
- AA tree (Andersson '??)
- treap (shortest code)
 - simple but randomized

Method 3: 2-3 Trees or 2-3-4 Trees (Hopcroft '70)
(easiest to understand conceptually)
be more flexible with degree

Invariants:
1. At node v, $a \leq \deg(v) \leq b$
2. all leaves at same depth

for params a, b with $a = \lceil b/2 \rceil$
e.g. $b=3$
$a=2$

```
3  7  10  11  13
2  3  5  7  10  11  13
```

elems stored at leaves

$n \geq a^h$

\Rightarrow height $\leq \log a n$

query: still $O(\log n)$

insert: whenever $\deg(v) = b+1$ for some v:

split v into 2 nodes of $\deg \sim \frac{b+1}{2}$

$\Rightarrow O(\log n)$ splits (up a path)

$\Rightarrow O(\log n)$ time.

delete: whenever $\deg(v) = a-1$ for some v:

fuse v with sibling & split if $\deg \geq b$

$\Rightarrow O(\log n)$ fuses

$\Rightarrow O(\log n)$ time