divide into \(\frac{n}{b} \) blocks of size \(b \)

store prefix/suffix mins inside each block \(\leq O(n) \)

use Method 6 inside each block \(\leq O(\frac{n}{b} \cdot b \log b) \)

use Method 6 for the mins of all blocks \(\leq O(\frac{n}{b} \log \frac{n}{b}) \)

query time \(O(1) \)

Space/preproc time \(O(n + \frac{n}{b} \cdot b \log b + \frac{n}{b} \log \frac{n}{b}) \)

\(b = \log n \) \(\Rightarrow O(n \log \log n) \)

Method 8: recursion!

use recursion inside each block
rest same

space/preproc time

\[
S(n) = O(n) + O(\frac{n}{b} \log \frac{n}{b}) + \frac{n}{b} S(b)
\]

Set \(b = \log n \)

\[
S(n) = \frac{n}{\log n} S(\log n) + O(n)
\]

\[\rightarrow n\]
Method 9 bootstrap again:

\[
S(n) = O(n) + O\left(\frac{n}{b} \log^* \frac{n}{b}\right) + \frac{n}{b} S(b)
\]

Set \(b = \log^* n \)

\[
S(n) = O(n) + \frac{n}{\log^* n} S(\log^* n)
\]

\[
\Rightarrow \text{space/prep time } O(n \log^{**} n)
\]

\[
\Rightarrow \text{query time } O(1)
\]

Bootstrap \(l \) times

\[
\text{space/prep } O(n (\log \cdots \log n))
\]

\[
\text{query time } O(1)
\]

Def. Inverse Ackermann fn
Def Inverse Ackermann function
\[\alpha(n) = \text{smallest } \ell \text{ s.t. } \log^\ell n \leq \text{const} \]

Query time: \(O(\alpha(n)) \)
Space prepare: \(O(n) \)

[optimal for semigroup op]

Related Problem (Lowest Common Ancestor (LCA))
Given binary tree \(T \) with \(n \) nodes,
build data structure to answer following query:
find nodes \(u, v \), find LCA

Thm RMQ reduces to LCA.

Pf: Given \(a_1, \ldots, a_n \), define Cartesian tree:
- root is min
- recurse on all elements to its left
- right

\[(2) ((1)(1)) ((1)(1)) ((1)) \]
Cartesian tree can be built in \(O(n) \) time:

e.g. insert elements from left to right

maintain rightmost path in stack \(S \)

3 \(\Rightarrow \) 4 \(\Rightarrow \) 5

\(\times \)

To insert \(a_i \):

while \(S \text{.top}() > a_i \) \(S \text{.pop}() \)
del 1 edge, insert 2 edges

\(S \text{.push}(a_i) \).

(\text{amortised analysis!})

Total time \(O(n + \#\text{pops}) \)

\(\leq O(n + \#\text{pushes}) \)

\(= O(n) \)

Then LCA reduces to RMQ.

\text{Pf:}

\(\text{Given tree} \)

\(\)
Pf:

Given tree

look at depth values
take in-order traversal

2 1 5 4 6 5 6 3 2 3

Method 10 (Final) (Harel, Tarjan '84 /
Schieber, Vishkin '88)
Bender, Farach-Costa '00

divide into \(\frac{n}{b} \) blocks of size \(b \) as before

how to solve subproblems of size \(b \) directly?

precompute all answers
for all inputs of size \(b \).

inputs of size \(b \)

= # binary trees of size \(b \)

\leq 2^{4b}

can encode binary tree as sequence of
\leq 4b bits

query by table lookup

with size
query by table lookup
\[\text{ans}[T, i, j] \]

table size \(O(2^{ab}b^2) \)

Space/proc time
\[\leq O(n + \frac{a}{b}(\log \frac{a}{b})) + O(2^{ab}b^2) + O(\frac{n}{b} \cdot b) \]

query time \(O(1) \)

set \(b = \frac{\log a}{8} \)

\(O(n) \) Space/proc time