Homework 4 (due Dec 4 Monday 10am)

Instructions: see previous homework. This homework is shorter and is worth half the weight.

1. [22 pts] We are given an undirected graph $G=(V, E)$ with n vertices and m edges, where each edge e has a time interval $[a(e), b(e)]$ indicating when e is "alive". Assume that $a(e), b(e) \in$ $\{1, \ldots, 2 m\}$ and the numbers are all distinct. We want to determine all time values $t \in$ $\{1, \ldots, 2 m\}$ for which the subgraph $G_{t}=(V,\{e \in E: t \in[a(e), b(e)]\})$ (consisting of all edges that are alive at time t) is connected.
(a) [5 pts] Using a data structure from class, show that the problem can be solved in $O\left(m \log ^{2} n\right)$ time.
(b) $[17 \mathrm{pts}]$ Next, describe a direct algorithm that solves the problem in $O(m \log n)$ time. Hint: use divide-and-conquer on the time intervals, similar to segment trees. If an edge $e=u v$'s time interval $[a(e), b(e)]$ is "long", we can contract e, i.e., collapse its two vertices u and v into a single vertex...
2. [28 pts] We want to maintain a dynamic set S of n intervals, subject to insertions and deletions, so that we can quickly compute the value $c(S)$, defined as the minimum number of intervals of S that cover $[0,1]$.
(For example, for $S=\{[-0.3,0.3],[-0.2,0.05],[0.2,0.4],[0.1,0.6],[0.5,0.9],[0.7,1.1],[0.8,0.95]\}$, we have $c(S)=4$ since the 4 intervals $[-0.3,0.3],[0.1,0.6],[0.5,0.9],[0.7,1.1]$ cover $[0,1]$. You may assume that all endpoints are distinct.)
Define $\operatorname{succ}_{S}([a, b])$ to be the interval $\left[a^{\prime}, b^{\prime}\right] \in S$ that satisfies $a^{\prime} \leq b \leq b^{\prime}$ while maximizing b^{\prime}. It is known that the static problem can be solved by following greedy algorithm: let $\left[a_{0}, b_{0}\right]=[0,0]$, and $\left[a_{i}, b_{i}\right]=\operatorname{succ}_{S}\left(\left[a_{i-1}, b_{i-1}\right]\right)$ for $i=1, \ldots, \ell$, till $a_{\ell} \leq 1 \leq b_{\ell}$. Then $c(S)=\ell$. (You do not need to prove correctness of this greedy algorithm, though the proof is not difficult.)
(a) $[4 \mathrm{pts}]$ First, show that for a static set P of n intervals, there is a data structure with $\widetilde{O}(n)$ preprocessing time and space, so that given any query interval $[a, b]$ (not necessarily in P), we can compute $\operatorname{succ}_{P}([a, b])$ in $\widetilde{O}(1)$ time. The \widetilde{O} notation hides polylogarithmic (i.e., $\left.\log ^{O(1)} n\right)$ factors.

Hint: 1D range max.
(b) $[16 p t s]$ For a static set P of n intervals, give a data structure with $\widetilde{O}(n)$ preprocessing time and space, so that for any additional query set Q of q intervals, we can compute $c(P \cup Q)$ in $\widetilde{O}(q)$ time.

Note: you may use the following fact: given any tree with n nodes (not necessarily balanced), we can build a static data structure with $O(n)$ preprocessing time and space, so that given any node v and integer i, we can find the ancestor of v at level i (if exists) in $O(1)$ time (this is known as a level ancestor query).
Hint: consider the tree/forest $T=\left\{\left(I, \operatorname{succ}_{P}(I)\right): I \in P\right\}$.
(c) $[8 \mathrm{pts}]$ Now, consider a dynamic setting where the update sequence satisfies a first-in first-out (FIFO) assumption: namely, whenever I is inserted before I^{\prime}, we are promised that I must be deleted before I^{\prime}.
Using (a) and (b), give a dynamic data structure that supports insertions and deletions in S in $\widetilde{O}(\sqrt{n})$ amortized time and can compute $c(S)$ in $\widetilde{O}(\sqrt{n})$ time, assuming FIFO updates.
Hint: do periodic rebuilding after every q updates.
Bonus [up to 5 pts]: obtain the same result in the general dynamic setting without the FIFO assumption (this might require a different approach).

