
CS 598TMC, Fall 2023
Timothy Chan

Homework 4 (due Dec 4 Monday 10am)

Instructions: see previous homework. This homework is shorter and is worth half the weight.

1. [22 pts] We are given an undirected graph G = (V,E) with n vertices andm edges, where each
edge e has a time interval [a(e), b(e)] indicating when e is “alive”. Assume that a(e), b(e) ∈
{1, . . . , 2m} and the numbers are all distinct. We want to determine all time values t ∈
{1, . . . , 2m} for which the subgraph Gt = (V, {e ∈ E : t ∈ [a(e), b(e)]}) (consisting of all edges
that are alive at time t) is connected.

(a) [5 pts] Using a data structure from class, show that the problem can be solved in
O(m log2 n) time.

(b) [17 pts] Next, describe a direct algorithm that solves the problem in O(m log n) time.

Hint: use divide-and-conquer on the time intervals, similar to segment trees. If an edge
e = uv’s time interval [a(e), b(e)] is “long”, we can contract e, i.e., collapse its two
vertices u and v into a single vertex. . .

2. [28 pts] We want to maintain a dynamic set S of n intervals, subject to insertions and
deletions, so that we can quickly compute the value c(S), defined as the minimum number of
intervals of S that cover [0, 1].

(For example, for S = {[−0.3, 0.3], [−0.2, 0.05], [0.2, 0.4], [0.1, 0.6], [0.5, 0.9], [0.7, 1.1], [0.8, 0.95]},
we have c(S) = 4 since the 4 intervals [−0.3, 0.3], [0.1, 0.6], [0.5, 0.9], [0.7, 1.1] cover [0, 1]. You
may assume that all endpoints are distinct.)

Define succS([a, b]) to be the interval [a′, b′] ∈ S that satisfies a′ ≤ b ≤ b′ while maximizing
b′. It is known that the static problem can be solved by following greedy algorithm: let
[a0, b0] = [0, 0], and [ai, bi] = succS([ai−1, bi−1]) for i = 1, . . . , ℓ, till aℓ ≤ 1 ≤ bℓ. Then
c(S) = ℓ. (You do not need to prove correctness of this greedy algorithm, though the proof
is not difficult.)

(a) [4 pts] First, show that for a static set P of n intervals, there is a data structure with
Õ(n) preprocessing time and space, so that given any query interval [a, b] (not necessarily
in P ), we can compute succP ([a, b]) in Õ(1) time. The Õ notation hides polylogarithmic
(i.e., logO(1) n) factors.

Hint: 1D range max.

(b) [16 pts] For a static set P of n intervals, give a data structure with Õ(n) preprocessing
time and space, so that for any additional query set Q of q intervals, we can compute
c(P ∪Q) in Õ(q) time.

1



Note: you may use the following fact: given any tree with n nodes (not necessarily
balanced), we can build a static data structure with O(n) preprocessing time and space,
so that given any node v and integer i, we can find the ancestor of v at level i (if exists)
in O(1) time (this is known as a level ancestor query).

Hint: consider the tree/forest T = {(I, succP (I)) : I ∈ P}.

(c) [8 pts] Now, consider a dynamic setting where the update sequence satisfies a first-in
first-out (FIFO) assumption: namely, whenever I is inserted before I ′, we are promised
that I must be deleted before I ′.

Using (a) and (b), give a dynamic data structure that supports insertions and deletions
in S in Õ(

√
n) amortized time and can compute c(S) in Õ(

√
n) time, assuming FIFO

updates.

Hint: do periodic rebuilding after every q updates.

Bonus [up to 5 pts]: obtain the same result in the general dynamic setting without the
FIFO assumption (this might require a different approach).

2


