
CS 598TMC, Fall 2023
Timothy Chan

Homework 3 (due Nov 3 Friday 10am)

Instructions: see previous homework.

1. [25 pts] We are given a set S of n points in 2D, where each point is assigned a color. Present
an efficient data structure so that a given query (axis-aligned) rectangle q, we can quickly
decide whether all points inside q have the same color. (You may assume that q contains at
least one point.)

(Hint: modify the 2D range tree.)

2. [20 pts] Consider the following problem: store a set S of n (axis-aligned) rectangles in 2D
so that for a given query horizontal line segment q1q2, we can quickly count the number of
rectangles r ∈ S that q1q2 completely cuts across (i.e., q1q2 intersects both the left and right
side of r). Design an efficient data structure for this problem.

(Hint: directly reduce to orthogonal range searching. How many dimensions?)

r1 r2

r3

r4

r5

q1 q2

q1q2 completely cuts across
r3 and r4 (but not r5)

3. [30 pts] In this question, you will explore a different method for solving the 2D planar point
location problem.

(a) [15 pts] Let s1, . . . , sn be a set of n disjoint line segments, such that the left endpoints
all lie on a common vertical line ℓ. Give an O(n)-space data structure for this special
case that can find the segment immediately above and the segment immediately below
a query point in O(log n) time.

Hint: sort s1, . . . , sn are sorted by the y-coordinates at ℓ. For i = 1, . . . , n/2, let s′i be
the segment from {s2i−1, s2i} whose right endpoint’s x-coordinate is larger. Recursively
build a data structure for s′1, . . . , s

′
n/2.

1



q

(b) [15 pts] Using (a) and divide-and-conquer, present a data structure for 2D planar point
location with O(n) space and O(log2 n) time.

4. [25 pts] We are given a set S of n horizontal line segments in 2D, with integer coordinates in
[U ]. We want a data structure to answer the following type of queries: given a vertical line
segment q with integer coordinates in [U ], report all segments in S that intersects q. Describe
a solution with O(n log logU) space and O(log logU log log n + k log log n) query time (or
better), where k denotes the number of reported segments.

(Hint: persistence, and vEB trees.)

2


