Homework 3 (due Nov 3 Friday 10am)

Instructions: see previous homework.

1. [25 pts] We are given a set S of n points in 2D, where each point is assigned a color. Present an efficient data structure so that a given query (axis-aligned) rectangle q, we can quickly decide whether all points inside q have the same color. (You may assume that q contains at least one point.)

 (Hint: modify the 2D range tree.)

2. [20 pts] Consider the following problem: store a set S of n (axis-aligned) rectangles in 2D so that for a given query horizontal line segment $q_1 q_2$, we can quickly count the number of rectangles $r \in S$ that $q_1 q_2$ completely cuts across (i.e., $q_1 q_2$ intersects both the left and right side of r). Design an efficient data structure for this problem.

 (Hint: directly reduce to orthogonal range searching. How many dimensions?)

3. [30 pts] In this question, you will explore a different method for solving the 2D planar point location problem.

 (a) [15 pts] Let s_1, \ldots, s_n be a set of n disjoint line segments, such that the left endpoints all lie on a common vertical line ℓ. Give an $O(n)$-space data structure for this special case that can find the segment immediately above and the segment immediately below a query point in $O(\log n)$ time.

 Hint: sort s_1, \ldots, s_n are sorted by the y-coordinates at ℓ. For $i = 1, \ldots, n/2$, let s'_i be the segment from $\{s_{2i-1}, s_{2i}\}$ whose right endpoint’s x-coordinate is larger. Recursively build a data structure for $s'_1, \ldots, s'_{n/2}$.
(b) [15 pts] Using (a) and divide-and-conquer, present a data structure for 2D planar point location with $O(n)$ space and $O(\log^2 n)$ time.

4. [25 pts] We are given a set S of n horizontal line segments in 2D, with integer coordinates in $[U]$. We want a data structure to answer the following type of queries: given a vertical line segment q with integer coordinates in $[U]$, report all segments in S that intersects q. Describe a solution with $O(n \log \log U)$ space and $O(\log \log U \log \log n + k \log \log n)$ query time (or better), where k denotes the number of reported segments.

(Hint: persistence, and vEB trees.)