Homework 3 (due Nov 3 Friday 10am)

Instructions: see previous homework.

1. $[25 \ pts]$ We are given a set S of n points in 2D, where each point is assigned a color. Present an efficient data structure so that a given query (axis-aligned) rectangle q, we can quickly decide whether all points inside q have the same color. (You may assume that q contains at least one point.)

(Hint: modify the 2D range tree.)

2. [20 pts] Consider the following problem: store a set S of n (axis-aligned) rectangles in 2D so that for a given query horizontal line segment $\overline{q_1q_2}$, we can quickly count the number of rectangles $r \in S$ that $\overline{q_1q_2}$ completely cuts across (i.e., $\overline{q_1q_2}$ intersects both the left and right side of r). Design an efficient data structure for this problem.

(Hint: directly reduce to orthogonal range searching. How many dimensions?)

- 3. [30 pts] In this question, you will explore a different method for solving the 2D planar point location problem.
 - (a) $[15 \ pts]$ Let s_1, \ldots, s_n be a set of n disjoint line segments, such that the left endpoints all lie on a common vertical line ℓ . Give an O(n)-space data structure for this special case that can find the segment immediately above and the segment immediately below a query point in $O(\log n)$ time.

Hint: sort s_1, \ldots, s_n are sorted by the *y*-coordinates at ℓ . For $i = 1, \ldots, n/2$, let s'_i be the segment from $\{s_{2i-1}, s_{2i}\}$ whose right endpoint's *x*-coordinate is larger. Recursively build a data structure for $s'_1, \ldots, s'_{n/2}$.

- (b) $[15 \ pts]$ Using (a) and divide-and-conquer, present a data structure for 2D planar point location with O(n) space and $O(\log^2 n)$ time.
- 4. $[25 \ pts]$ We are given a set S of n horizontal line segments in 2D, with integer coordinates in [U]. We want a data structure to answer the following type of queries: given a vertical line segment q with integer coordinates in [U], report all segments in S that intersects q. Describe a solution with $O(n \log \log U)$ space and $O(\log \log U \log \log n + k \log \log n)$ query time (or better), where k denotes the number of reported segments.

(Hint: persistence, and vEB trees.)