
CS 598TMC, Fall 2023
Timothy Chan

Homework 1 (due Sep 22 Friday 10am)

Instructions: You may work individually or in groups of at most 3; submit one set of solutions
per group to Gradescope. Always acknowledge any discussions you have with other people and any
sources you have used (although most homework problems should be doable without using outside
sources). In any case, solutions must be written in your own words.

1. [25 pts] Recall the range minimum query problem: store a sequence of n numbers a1, . . . , an
in a data structure so that given indices i, j, we can quickly compute the minimum of the
contiguous subsequence ai, . . . , aj . Suppose that in addition, we want to support the following
update operation: given index i and number x, change ai’s value to x.

Describe a data structure withO(n) space, O(log n/ log log n) query time, andO(log n) update
time for this problem.

[Note: a weaker O(log n) query time instead will get you up to 15 points.]

[Hint: To get O(log n/ log log n) query time, use a tree with a larger degree d (for what choice
of d?); you will also need table lookup (like “Method 10” from class). . .]

2. [20 pts] Consider the problem of maintaining an approximate median of a set S of n numbers,
subject to insertions and deletions of elements in S. Here, an approximate median is defined
as an element that has rank between 0.49n and 0.51n.

Design and analyze a (very simple) data structure that solves this problem with O(1) amor-
tized update time.

3. [25 pts] We have a set S of at most N numbers, and we want to place the elements of S into
an array A with M slots, so that for any x, y ∈ S with x < y, the slot for x is to the left of
the slot for y. We also want to support insertions of new elements to S.

One obvious solution is to place x in slot i if x is the i-th smallest element in S. This requires
only M = N slots. However, an insertion may require moving O(N) elements to new slots.

(a) [7 pts] Describe a simple solution using M = 2N slots so that each insertion can be
done without moving any elements.

(b) [18 pts] The solution in (a) uses exponentially many slots. We consider a different
solution usingM = N2 slots, which is described recursively by the following pseudocode1

(this has some vague similarity with the weight-balanced tree method from class):2

1I might be sloppy about floors/ceilings and boundary cases here, but hopefully you get the general idea. . .
2Correction: in line 2 of insert, S should be SL (and similarly, in line 5 of insert, S should be SR).

1

rebuild(S,N,A), where |S| ≤ N , and array A has N2 slots:

1. if N = 1 then store the single element of S in the first slot and return
2. let m be the median of S
3. let SL = {x ∈ S : x < m} and SR = {x ∈ S : x ≥ m}
4. divide A into two subarrays AL, AR with N2/2 slots each

5. rebuild(SL, N/
√
2, AL)

6. rebuild(SR, N/
√
2, AR)

insert(S,N,A, x):

1. if x < m then

2. if |SL|+ 1 ≤ N/
√
2 then insert(S,N/

√
2, AL, x)

3. else remove all elements of S from A, set S = S ∪ {x}, and call rebuild(S,N ,A)
4. else

5. if |SR|+ 1 ≤ N/
√
2 then insert(S,N/

√
2, AR, x)

6. else remove all elements of S from A, set S = S ∪ {x}, and call rebuild(S,N ,A)

Show that with this method, each insertion moves only an amortized O(logN) number
of elements. Use the following definition of potential:

Φ =
∑

(S,N,A)

(max{|SL| −N/2, 0}+max{|SR| −N/2, 0}),

where the sum is over all (S,N,A) that appear during the recursion.

4. [30 pts] Consider the dynamic predecessor search problem in the setting where there are only
insertions, but no deletions. Balanced search trees solve the problem with O(log n) insertion
and query time, but require Ω(n) extra space for the pointers. We will explore a completely
different solution that uses only a single array without any extra space.

Specifically, after n insertions, the elements are stored in A[1, . . . , n] in some (not necessarily
globally sorted) order. Write n = bℓ−1 · · · b1b0 in binary. For each i = 0, . . . , ℓ, let ni be the
ℓ-bit number n = bℓ−1 · · · bℓ−i0 · · · 0. We maintain the invariant that for each i, the subarray
A[ni−1 + 1, . . . , ni] is sorted (whenever ni ̸= ni+1).

[For example: say n = 11 (i.e., 1011 in binary). Then n0 = 0, n1 = 8 (i.e., 1000 in binary),
n2 = 8, n3 = 10 (i.e., 1010 in binary), and n5 = 11.3 The invariant says that A[1, . . . , 8] is
sorted andA[9, 10] is sorted. E.g., the array may look like ⟨12, 15, 19, 30, 31, 40, 48, 54, 24, 35, 17⟩.]
The insertion procedure is simple (in line 3, recall that heapsort is an optimal sorting algorithm
that does not require any extra space):

insert(x):

1. n = n+ 1, A[n] = x
2. find the largest integer k such that n is divisible by 2k

3. sort the subarray A[n− 2k + 1, . . . , n] by heapsort

3Correction: n5 should be n4.

2

[For example: when inserting x = 20 in the above example, n becomes 12 (i.e., 1100 in
binary), and k = 2. The new array is ⟨12, 15, 19, 30, 31, 40, 48, 54, 17, 20, 24, 35⟩.]

(a) [5 pts] Argue that the above insertion procedure indeed preserves the invariant.

(b) [10 pts] Show how to answer a query in O(log2 n) time.

(c) [15 pts] Prove that insertion takes O(log2 n) amortized time.

[Hint: over a sequence of n insertions, how many times do we have k = 0? Or k = 1?
Etc.?]

3

