3 SUM with Additive Combinatorics (C.- (ewonstein'15) December 2, 2020 10:47 AN « is O(n²⁻⁸) possible? special cases? (e.g. for input in (n²⁻⁸), an use FFT) Warm-Up Problem : 35UM with Preprocessed Universe Given sets d, B, & of n integers, preprocess s.t. given any ASd, BSB, CSC can decide if JacA, bcB, c.c.C atb= c. Intuition - "usually" not difficult for most c. only small # ways to write c= 0+6. - but bod exs exist e.g. d, B, C = {1,2,3,...,n} or arithmetic progression or lattice - but in these bod exs. (d+ 28) is linear instead of quadratic Lemma (Cole-Hariharan '02) For any sets A, B of n ints, Concompute A+B in O([A+B]), time (output-sensitive) Pf omitted. (by hashing + FFT). 17 "BSG Thm" (Balog-Seemeredi-Gowers Thm)

"BSG Thun" (Bulog Semerical Gauers Ihm)
Griven ed., B., L. of size n.
Suppose
$$|\{(a,b) \in A \times B: a+b \in E\}| \ge dn^2$$
.
Then can extract subsets $A \le d$, $B \le B$ st.
(i) $(A' + B'| \le O((Va)^{9}n))$
(ii) $|A'|, |B'| \ge SL(an)$.
History: Balog Semerical '94 complicated pf
Growers '01
Balog '07 \longrightarrow Tao's book)
Stronger Version: "BSG Decomposition"
(Given d, B, E of size n.
Then \exists subsets $A_1, \dots, A_k \le d$, $B_1, \dots, B_k \le B$ st
(i) $A \times B = \bigcup_{i=1}^{k} (A \times B_i) \cup R$
(ii) $(A + B) = O((Va)^{5}n)$
(iii) $(A + B) = O((Va)^{5}n)$
(iii) $k = O(Va)$.
Sol'n to Preproc-Univ. 3SUM:
Preprocessing: construct BSG decomposition
in $O(n^2)$ time ((.-levender's))
Now given $A \le d$, $B \le B$, $C \le C$.
(i) for each $(a,b) \in R$,
(ii) for each $(a,b) \in R$,
(ii) for each $(a,b) \in R$,
(ii) for each $(A, Compute$
 $(A: \cap A) + (B; \cap B)$ by Coketherlamm
(A: $\cap A) + (B; \cap B)$ by Coketherlamm
(A: $\cap A) + (B; \cap B)$ by Coketherlamm
(A: $\cap A) + (B; \cap B)$ by Coketherlamm

(A:
$$n A$$
) + (B: $n B$) by Cortained
in $O((Vd)^3n)$ time
8 check each $c \in C$
3 Time $O(an^2 + (d)^6 n)$
Set $d = \frac{1}{n^{17}} \Longrightarrow O(n^{13/7}) = O(n^{1.86})$
Applin: 3SUM in 'Clustered Gase"
Suppose A, B, C are contained in m intervals
of length 2.
 $\frac{obc}{corr} = \frac{odc}{corr} = \frac{occ}{corr} = \frac{occ}{corr}$
For each element x, write $x = x^2 + x^{244}$
where $x^2 = witerval left endpt$
 $x^{444} \in [R]$.
Velvocess ($a^4: a \in A^3$, ($b^4: b \in B^3$,
 $(c^4: c \in C^2)$ in $O(m^2)$ thing
Enc each if $i \in [R]$.

For each $i, j \in (x)$, solve 3SUM for $i (a^*: a^* + i \in A^3)$, $j (b^*: b^* + j \in B^3)$ $j (c^*: c^* + i + j \in C)$ $or \{c^* - l: c^* + i) - l \in C^3$ $or \{c^* - l: c^* + i) - l \in C^3$ $or \{c^* - l: c^* + i) - l \in C^3$ $or \{c^* - l: c^* + i) - l \in C^3$

text
$$t_1 \cdots t_n \in [\sigma]^k$$

given query vectors $c_1 \cdots c_n \in [n]^\sigma$,
for each c_k , decide if \exists substring $t_1 \cdots t_1^{j_1}$.
for each c_k , decide if \exists i, j_2 , $a_j - a_i = c_k$.
SSM for vectors
but input setisfies bounded-diff propety
($a_{in1} - a_i \in \{0, 1\}^\sigma$)
 \vdots
divide set of vectors in $\frac{n}{2}$ elusters
each is in $[2]^\sigma$.
 $\exists G\left(\left(\frac{n}{2}\right)^2 + (2\sigma)^2 \left(\frac{n}{2}\right)^{\frac{13}{7}}\right)$
 $\equiv O\left(\frac{n^2}{2} + (2\sigma)^2 (n^{\frac{13}{7}}\right)$

$$= \widetilde{O}\left(\frac{n^{2}}{3^{2}} + \sqrt{2\sigma - \frac{1}{7}}, \frac{13/7}{n^{2}}\right)$$

Set $\sqrt{2\sigma - \frac{13}{7} + 2} = n^{2}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{2}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{2}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{2}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2} = n^{\frac{1}{7}}$, $\sqrt{2\sigma + \frac{1}{7}} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2}$, $\sqrt{2} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2}$, $\sqrt{2} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2}$, $\sqrt{2} = n^{\frac{1}{7}}$, $\sqrt{2} = n^{\frac{1}{7}}$
 $\sqrt{2} = n^{\frac{1}{7} + 2}$, $\sqrt{2} = n^{\frac{1}{7}}$, $\sqrt{2} = n^{\frac{$