Conditional Lower Bds Based on 3SUM

3SUM Problem
Given set S of n numbers, decide if \(\exists a, b, c \in S \) st. \(a + b + c = 0 \)

(3-set version: given \(A, B, C \), \(\exists a \in A, b \in B, c \in C \) st. \(a + b + c = 0 \))

Conjecture
no \(O(n^{2-\delta}) \)-time algm for 3SUM
(for reals or for ints)
(or more strongly, for ints in \(\mathbb{Z}^2 \))

History: Gajentaan-Overmars '93 in computational geometry

Exs of Geometric Problems

3-Collinear-Pts: given set \(S \) of \(n \) pts in \(\mathbb{Z}D \), decide if \(\exists 3 \) pts of \(S \) lying on a common line

\(3 \text{SUM} \rightarrow 3 \text{-Collinear-Pts} \)

\(y = 1 \)
\(y = \sqrt{2} \)
\(y = x^3 \)
collinear iff $a + b = c$

3-Concurrent Lines: Given n lines in 2D, decide if 3 lines that intersect at a common pt

3-SUM \rightarrow 3-Concurrent Lines

Coverage: Given n objects in 2D, decide if union covers $[0,1]^2$
Motion Planning: given n obstacles & robot, decide if robot can be moved from one position to another

Etc.

Thm (Patrascu'10) Assuming (int) 3SUM conj, no $O(n^{3-\epsilon})$ alg'n for Zero-WT Triangle for weighted graphs

Rmk: we proved this before assuming APSP conj.

Convolution-3SUM Problem

Given a_1, \ldots, a_n, $a_1 \ast a_2 \ast \cdots \ast a_n = a_n$
Convolution-3Sum problem

Given \(\mathbf{a} \), decide if \(\exists i, k \) s.t.
\[
\mathbf{a} + \mathbf{a}_k = \mathbf{a} \tag{1}
\]
(i.e. \(\exists i, j \) s.t. \(a_i + a_j = a_{i+j} \))

Obviously, \(\text{Convol-3Sum} \rightarrow 3 \text{Sum} \).
(map \(a_i \rightarrow (i, a_i) \))
\[
\Rightarrow iM + a_i \quad \text{for large } M
\]

Reduction: \(3 \text{Sum} \rightarrow \text{Convol-3Sum} \) (for wts)
(Patrascu '10 / Kopelowitz-Pettie-Porat '16 / C.-He '20)

Idea - hashing, by a linear fn
\[
h(a+b) = h(a) + h(b)
\]

E.g.
pick rand. prime \(p \in [R/2, R] \)
let \(h(x) = x \mod p \).

Prop (i) \[
h(a+b) = h(a) + h(b)
\]
\[
\text{or } h(a) + h(b) = p
\]

(ii) for fixed \(a, a' \in [0] \) with \(a \neq a' \),
\[
\Pr \left[h(a) = h(a') \right] \leq \tilde{O}(\frac{1}{R})
\]

Pf of (ii):
\[
\begin{align*}
\Pr & \left[a \equiv a' \mod p \right] \\
& = \Pr \left[p \text{ is prime divisor of } a - a' \right] \\
& = \# \text{ prime divisors of } a - a' \\
& \quad \frac{1}{\# \text{ primes}} \\
& = \Theta \left(\log U \right) = \tilde{O}(\frac{1}{R})
\end{align*}
\]
\[= \frac{\Theta((\log U)}{\Theta(R/\log R)} = \tilde{\Theta}\left(\frac{1}{R}\right). \]

Cor for each fixed \(l \), set \(S \) of \(n \) numbers.
the "bucket" \(B_{l} = \{ a \in S : h(a) = l \} \)
has expected size \(\tilde{\Theta}\left(\frac{n}{R}\right) \).

To solve 3SUM for set \(S \) of \(n \) numbers:

Choose \(R = n \).
Call bucket \(B_{l} \) "good" if its size is \(\tilde{\Theta}(1) \).
\(< \) ans is in 3 good bucket is \(\Omega(1) \) prob.

\(\bigcup \{a, b, \ldots, c\} \)
for each nonempty bucket \(B_{l} \), do
pick \(x \in B_{l} \) at rand.
& set \(x \)'s index to \(R \)
(i.e. \(a_{R} = x \)).

Solve \textit{Convolsum} on \(a_{1}, \ldots, a_{n} \).
\(\uparrow \)
ans found in \(\tilde{\Theta}(1) \) prob.

Repeat \(\tilde{\Theta}(\log n) \) times.

Remk: can lower the extra log \(\tilde{\Theta}(\log n) \)
or derandomize ...

\textbf{Reduction!} \textit{Convolsum} \(\rightarrow \) \textit{zero-\text{lat} Triangle}

idea - Similar to \((\min,+)\)-Convolution \(\rightarrow \)(\(\min,+)\)-MM
\[d = \sqrt{n} \]

\[M^*(V_n, \sqrt{n}, n) \]

\[= O \left(\frac{M^*(V_n)}{V_n (V_n)^{3-\delta}} \right) \]

\[V_n (V_n)^{3-\delta} = n^{2 \cdot \frac{\delta}{2}} \]