Point Location in Sublog Time: Orthogonal Case

Assumption: word RAM model, \(w \approx \log U \)
integer input \(w \approx \log U \)

eqw.

Slab Method: \(O(\log \log U) \) time (by uEB tree)
\(O(n^2) \) space

de Berg-Snoeyink-van Kreveld '95:
\(O(n) \) space
\(O((\log \log U)^2) \) time

\(\rightarrow \)
C. 'Ill:
\(O(n) \) space
\(O(\log \log U) \) time

Approach 1

idea - use \(\sqrt{n} \times \sqrt{n} \) grid

let universe be \([u_x] \times [u_y] \)
form \(\sqrt{n} \) columns of width \(\frac{u_x}{\sqrt{n}} \)
& \(\sqrt{n} \) rows of height \(\frac{u_y}{\sqrt{n}} \)

Given \(n \) disjoint rects:
1. for each column/row \(\sigma \),
 recursively build DS for all rects that have a vertex in \(\sigma \)

2. for each grid cell \(\tau \),
 record info (is \(\tau \) completely inside a rect. ?) (Note: each rect. is stored horizontally/vertically \(\leq 4 \) subrects)

Query alg'm, given pt \(q \):
find grid cell \(\tau \) containing \(q \) \(\leq O(1) \) time
if \(\tau \) is completely inside a rectangle
done
if \(\tau \) is cut across horizontally then recurse in \(\tau \)'s row
 " " " " " vertically " " " " " \(\tau \)'s cells
else recurse in \(\tau \)'s row or column
(Note: just 1 recursive call!)

\[Q(n, U_x, U_y) \leq \begin{cases}
Q(n, U_x, U_y) + O(1) & \text{or} \\
Q(n, U_x, \frac{U_y}{\sqrt{n}}) + O(1)
\end{cases} \]

[good initially but not good as \(n \) gets small]
[could reduce to rank space to make it, \(W = O(n) \), but extra \(\log \log \)]

Approach 2

- idea - generalize vEB
- divide into \(V \times x \) columns of width \(U_x \)

1. let \(D = \) set of all nonempty columns
2. recursively build DS after rounding

- universe size \(\sqrt{U_x} \times U_y \)

| "top structure!" |

3. recursively build DS for all nonempty columns, glued into one!

- universe size \(\leq n \sqrt{U_x} \times U_y \)

| "bottom structure" |

(Note: each rect. is stored in \(\leq 2 \) structs)
Query algorithm, given q:

- Find column $σ$ containing q in $O(1)$ time.
- If $σ \notin D$ then recurse in top structure.
- Else recurse in bottom structure.

\[Q(n, U_x, U_y) \leq Q(n, nVU_x, U_y) + O(1), \quad (***) \]

[U_x converges to $O(n)$, not const!]

Approach 3

Same but $'n$ in y.

\[Q(n, U_x, U_y) \leq Q(n, U_x, nVU_y) + O(1), \quad (***) \]

Final Approach

Combine!

Case 1. $n \geq U_x^{y_3}$ and $n \geq U_y^{y_3}$

\[(*) \Rightarrow Q(n, U_x, U_y) \leq \begin{cases} Q(n, U_x^{5/6}, U_y) + O(1) & \text{or} \\ Q(n, U_x, U_y^{5/6}) + O(1) \end{cases} \]

Case 2. $n < U_x^{y_3}$

\[(**) \Rightarrow Q(n, U_x, U_y) \leq Q(n, U_x^{5/6}, U_y) + O(1) \]

Case 3. $n < U_y^{y_3}$

\[(***) \Rightarrow Q(n, U_x, U_y) \leq Q(n, U_x, U_y^{5/6}) + O(1) \]

Levels of recursion:

\[O(\log\log U_x + \log\log U_y)\]

\[\Rightarrow \text{query time } O(\log\log U)\]
Space $O(n \cdot 4^{\omega \log \log n})$

$= O(n (\log n)^{\alpha_n})$

can be reduced to $O(n)$ by separator method or sampling.