Euclidean Traveling Salesman Problem (TSP)

Given n pts \(P \subseteq \mathbb{R}^2 \), find shortest tour \(C^* \) thru all pts

Note: opt tour is a polygon with
vertices at \(P \) & does not self-intersect

General metric case:
2-approx by MST

\((3/2) \)-approx by Christofides '76
better than 3/2 ? open

Geome Case:
\(\Rightarrow \) Arora '96: \(\exists \) PTAS!
Mitchell '96:

idea - shifted quadtree + DP

Say min bounding square has side length \(\varepsilon \).
Round pts to grid of side length \(\varepsilon / n \)
\(\Rightarrow \) total additive error \(\leq \varepsilon . n = \varepsilon \leq \varepsilon |C^*| \)
Build quadtree (uncompressed ok)
\(\Rightarrow \) depth \(O(\log \frac{\varepsilon}{\sqrt{n}}) = O(\log n) \);
nodes: \(O(n \log n) \).
Fix k.

Def For each quadtree cell B, place k evenly spaced pts on ∂B called portals.

Def A tour T is portal-respecting if \forall quadtree cell B, T crosses ∂B only thru portals & T visits each portal at most 2 times.

Lemma There exists an exact shortest portal-respecting tour in $O(2^{O(k)} n \log n)$ time.

Pf: By DP

Subproblem Given quadtree cell B & list of portal pairs $(s_1, t_1), \ldots, (s_b, t_b)$, $b \leq 2k$, find shortest set of b portal-respecting paths from s_1 to t_1, \ldots, s_b to t_b thru all pts in ∂B.

interfaces $\leq k \cdot O(k)$

legal interfaces \sim strings of $k \cdot k$ balanced parentheses

\sim Catalan's number

$\leq 2^{O(k)}$
total # subproblems \leq O\left(2^{O(k)} n \log n \right)

total time \quad O\left((2^{O(k)})^4 n \log n \right)

Arora's Alg:
1. randomly shift P
2. return shortest portal-resp tour

Analysis:
Round C^* into portal-resp tour by adding detours

If portal is visited > 2 times, patch first

Fix edge pq of C^*, of length l
Consider grid of side length 2^{-i}
If $l \geq 2^{-i}$, # times pq crosses grid boundary = $O\left(\frac{r}{2^i} \right)$
If 2^{-i},

\[
E \left(\text{# times } p q \text{ crosses grid bdry} \right) \leq \frac{2^{-i}}{2^{-i}} + \frac{2^{-i}}{2^{-i}} = O \left(\frac{1}{2^{-i}} \right) \]

\[
E \left(\text{# times } C^* \text{ crosses grid bdry} \right) = O \left(\frac{1}{2^{-i}} \right)
\]

\[
E \left(\text{total error} \right) = O \left(\sum_{i=0}^{\infty} \frac{1}{2^{-i}} \right) = O \left(\log n \left(\frac{\log n}{1} \right) \right) = O \left(\frac{\log n}{1} \right)
\]

by setting $k = \frac{1}{\epsilon} \log n$

Runtime: $2^{O(\log n)} n \log n = \Omega \left(\frac{n \log n}{1} \right)$

(can be reduced by trying all shifts)

Aurora's Second Alg. ('97)

1. Randomly shift P

2. Return shortest tour that is partial-wrap & crosses bdry of each quadtree cell 8 times

\[
\# \text{ interfaces } \leq O(6)
\]

\[
\Rightarrow \left[O \left(n \log n \right) \right] \text{ by setting } k = \frac{1}{\epsilon} \log n
\]

by more careful analysis

(do patching when seeing b crossings)

(bottom-up)

(charge each original crossing with exp.-decaying wt)
Rmk - Rao-Smith '95 $O(2^{(1/3)} n \log n)$
- extends to any const $d \geq 3$
& other problems e.g. min Steiner tree k-MST, ...