LP Rounding (Cont'd)

set cover for disks or pseudo-disks
or obj w. low union complexity

Warm-Up: case when all pts have large depth

Def: Given n objs S, a subset $R \subseteq S$ is an ϵ-net
if every pt with depth $> \epsilon n$ in S
is covered by R.

Rank: ϵ-approximation \Rightarrow ϵ-net

\[\frac{\text{depth}(P) - \text{depth}(R)}{\epsilon n} \leq 1 \]

Thm: \exists ϵ-net of size $O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon} \right)$.

Pf: Pick random sample $R \subseteq S$ of size r.

For fixed pt p with depth $> \epsilon n$ in S,

\[\Pr[p \text{ not covered by } R] \leq \left(1 - \frac{\epsilon}{n} \right)^{\epsilon n} \leq \left(e^{-\frac{\epsilon}{n}} \right)^{\epsilon n} = \frac{1}{e^{\epsilon}} \]

Set $r = \text{const} \cdot \log n$.

\[\Rightarrow \Pr[\text{fail}] \leq O\left(\frac{n^2}{n^{100}} \right) \ll 1 \]

\exists ϵ-net of size $O\left(\frac{1}{\epsilon} \log n \right)$.

How to reduce $\log n$ to $\log \frac{1}{\epsilon}$:

Fact: If R' is an ϵ-approximation of S
& R is an ϵ-net of R',
then R is an $(\epsilon + \epsilon')$-net of S.

Rmk: works for any set system with bounded shattering dim.
Better?

Thin (Matoušek-Seidel-Welzl '90)

For disks in \mathbb{R}^2, \exists ε-nets of size $O(\frac{1}{\varepsilon})$

one P_i; by shallow cutting lemma

\exists $O(1)$ cells each intersected by $O(\frac{1}{\varepsilon})$ disks

covering all pts of depth $\leq \frac{1}{4}$

\Rightarrow \exists $O(\frac{1}{\varepsilon})$ cells each intersected by $\leq \varepsilon$ disks

covering all pts of depth $\leq 2 \varepsilon n$

For each cell,

take $\frac{1}{2}$-net of size $O(1)$

\Rightarrow total size $O(\frac{1}{\varepsilon})$

covering all pts of depth $\varepsilon \in [\varepsilon n, 2 \varepsilon n]$

Overall size $O(\frac{1}{\varepsilon} + \frac{1}{2\varepsilon} + \frac{1}{4\varepsilon} + \ldots) = O(\frac{1}{\varepsilon})$. ⊙

Set cover can be formulated as ILP:

$$z_{ILP} = \min \sum_{i=1}^{n} x_i$$

s.t. $\sum_{i \in P} x_i \geq 1$, $\forall P \in P$

$\forall i \in \text{obj i containing } P$

$x_i \in \{0, 1\}$

LP relaxation

$0 \leq x_i \leq 1$ ("covering LP")

Know $z_{ILP} \leq \text{OPT}$.
How to round LP sol'n?

Create a multiset \(\hat{S} \) where

- obj \(i \) gets \(\left\lceil \frac{K x_i}{L} \right\rceil \) copies for suff large \(K \).

Then \(|\hat{S}| = \sum \left\lceil \frac{K x_i}{L} \right\rceil \leq K \cdot \text{OPT} \)

4 p \in \hat{S}, depth of p in \(\hat{S} \)

\[\sum_{\text{obj } i \text{ containing } p} L K x_i \geq K \cdot n. \]

Return \(\varepsilon \)-net of \(\hat{S} \) with \(\varepsilon = \frac{K \cdot n}{K \cdot \text{OPT}} = \mathcal{O}(\frac{1}{\text{OPT}}) \)

\[\Rightarrow \text{size } O\left(\frac{1}{\varepsilon}\right) = O\left(\frac{1}{\text{OPT}}\right). \]

\[\Rightarrow \text{approx factor } O(1). \]

Remarks:

- for arb. objs with bounded shattering dim,
 approx factor \(O(\log \text{OPT}) \)
 ("better" than \(O(\log n) \) for general set cover)
 if \(\exists \ \varepsilon \)-net of size \(O\left(\frac{1}{\varepsilon} \mu(\frac{1}{\varepsilon})\right) \),
 approx factor \(O(\mu(\text{OPT})) \)
 if union complexity is \(O(n \varepsilon \mu(\text{OPT})) \)
 \(\exists \ \varepsilon \)-net of size \(O\left(\frac{1}{\varepsilon} \log (\varepsilon)\right) \) \[\text{[Clarkson - Varadarajan '05]} \]
 \[\text{improves to } O\left(\frac{1}{\varepsilon} (\log \log (\varepsilon))\right) \text{ [Varadarajan '05]} \]

- for hitting set of rectangles in \(\mathbb{R}^2 \),
 Aronov-Ezra-Sharir: \(\exists \ \varepsilon \)-net of size \(O\left(\frac{1}{\varepsilon} \log (\varepsilon)\right) \)
 \[\Rightarrow O\left(\log \log \text{OPT}\right) \text{ approx factor} \]

- weighted ??
Alternative to LP: by "multiplicative weights update"

[Bromberg-Goodrich '94]

Guess \(\varepsilon \) with \(4\text{OPT} \leq \varepsilon \leq 8\text{OPT} \)

create multiset \(\hat{S} \) where initially each obj in \(S \) has multiplicity 1
repeat \(i \)

if some pt \(p \) has depth \(\leq \varepsilon |\hat{S}| \) in \(\hat{S} \) (multiplicities included)
	for each obj \(i \) covering \(p \)
	double multiplicity of obj \(i \)
else return a \((\varepsilon)\)-net \(R \) of \(\hat{S} \) of size \(\Omega(\varepsilon) = O(\text{OPT}) \)

Analysis: At each iteration,
\[|\hat{S}| \text{ increases by factor } 1 + \varepsilon \]

\(\Rightarrow \) after \(i \) iterations,
\[|\hat{S}| \leq (1 + \varepsilon)^i \]

Let \(T^* \) be opt sol'n. \((|T^*| = \text{OPT})\)

In each iteration, some obj in \(T^* \) has its multiplicity doubled

\(\Rightarrow \) after \(i \) iterations, some obj in \(T^* \) has been doubled

\[|\hat{S}| \geq 2^{\varepsilon/\text{OPT}} \]

\(\Rightarrow 2^{\varepsilon/\text{OPT}} \leq (1 + \varepsilon)^{n} \leq e^{\varepsilon n} \leq 2^{\varepsilon n} \leq 2^{2^{\varepsilon n}} \leq 2^{2^{\varepsilon n}} \]

\(\Rightarrow \) \(e \leq 0(\text{OPT} \log n) \)

\(\Rightarrow \) alg'm must terminate.