Proximity/Nearest Neighbors

Problem 1: Given \(n\) red pts \(P\) & \(n\) blue pts \(Q\) in \(\mathbb{R}^d\), find bi-chromatic closest pair.

Problem 2: Find nearest blue neighbor for every red pt.

Known exact alg's:
- \(d=2\) \(O(n \log n)\)
- \(d=3\) \(O(n^{4/3})\)
- \(d > 3\) \(O(n^{2 - \frac{d}{2(d-1)} + \epsilon})\)

Method 0 - rounding dirs:
 - For each red pt \(q\), unit vector
 - For each dir \(v \in V_q\), find blue pt \(q'\) in cone \(\{ \mathbf{p} : \angle (p-q, u) < \theta \}\) with smallest \(p \cdot u\)

Analysis:
- \(|p - q| \geq (p-q) \cdot u \geq |p-q| \cos \theta \sim (1 - O(\theta^2)) |p-q|

Set \(\theta = \sqrt{3}\)

\[O\left(\frac{1}{8d-1}\right) = O\left(\frac{1}{2^{d-1}/2}\right)\] dirs

Not obvious how to do cone range search...
Method 1 - grid
approx decision problem: given fixed r, return some pair of dist \(\leq (1+\epsilon)r \)
or declare closest pair dist > r.

Method 1.1
form grid of side length \(\frac{r}{\epsilon} \)
hash pts to grid cells for each nonempty grid cell \(B \)
check all grid cells \(B' \) with \(d(B,B') \leq r \).

runtime \(O\left(\frac{1}{\epsilon^2} n\right) \)

how to reduce to decision problem?
binary search - extra \(\log n \) factor
random walk ...

better \(\epsilon \)-dependence?

Method 1.2
form grid of side length \(\frac{r}{C} \)
if some grid cell contains both red & blue, done
for each nonempty grid cell \(B \)
for each nonempty blue grid cell \(B' \) with \(d(B,B') \leq r \)
if \(d(B,B') \leq r/2 \), done
if \(d(B,B') > r/2 \)
\(B \) & \(B' \) are well-separated: solve subproblem in \(B \) & \(B' \)
How to solve well-separated case?

build grid G_8 of side length $8r$ over middle hyperplane H
for each grid pt $g \in G_8$,

$$P_g = \text{nearest neighbor of } g \text{ in } B$$
$$Q_g = \ldots$$

return closest among P_g, Q_g

Analysis: say p^*, q^* is closest pair

Let g be closest grid pt to $p^*q^* \cap H$

$$||P_g - Q_g|| \leq ||P_g - g|| + ||g - Q_g||$$
$$\leq ||p^* - q^*|| + ||g - Q^*||$$
$$= \frac{||p^* - q^*||}{\cos \theta}$$

approx factor $1 + \varepsilon$ by setting $\varepsilon \sim \sqrt{E}$

total time $O\left(\frac{1}{(\varepsilon d+1) n}\right)$
Improvement:

by discrete Voronoi diagram (similar to ε-kernels)

near $O^*(n + \frac{1}{\varepsilon (d+1)/2})$ time for well-separated case

Total time

$$O^* \left(\sum \left(n_i + \frac{1}{\varepsilon (d+1)/2} \right) \right)$$

with $\sum n_i = O(n)$

$$= O^* \left(\frac{n}{\varepsilon (d+1)/2} \right)$$

no better!

Further Improvement: (C. '17, Agra-da Fonseca-Mount '17)

$$O^* \left(\sum \min \left\{ n_i + \frac{1}{\varepsilon (d+1)/2}, n_i^{2/3} \right\} \right) \text{ if } n_i \geq \frac{1}{\varepsilon (d+1)/2}$$

$$\leq O^* \left(\sum \frac{1}{\varepsilon (d+1)/4} n_i \right)$$

$$= O^* \left(\frac{n}{\varepsilon (d+1)/4} \right)$$

What if r is not fixed? e.g. nearest neighbor of each red pt

Method 2 - Quadtrees

Idea: hierarchy of grids

```
+  ->  +  ->  +  ...
```

...
Def: A quadtrees cell \(B \) is a grid cell of side length \(2^d \) for some \(d \in \{0, 1, \ldots, \log U\} \).

Space \(O(n \log U) \) can be reduced to \(O(n) \) by compressed quadtrees (short-cutting deg-1 nodes).

Decision query \((B, q, r) \): // find pt of dist < \((1/4) r\) from \(q \) or declare nearest neighbor dist \(r \)
if ball \((q, r) \) does not intersect \(B \) return
if \(B \) has side length \(\leq 2r \) return any pt in \(B \)
for each child \(B_i \) of \(B \)
decision query \((B_i, q, r) \)

\[\implies \text{query time} = O\left(\# \text{quadtrees cells of side length } > 2r \right) \]

\[\leq O\left(\sum_{l : 2^l > 2r} \left[\frac{r}{2^{2l-1}} \right] \right) \]
\[O\left(\frac{1}{\varepsilon^2} + \frac{1}{(2\varepsilon)^d} + \ldots \right) = O\left(\log U + \frac{1}{\varepsilon^d} \right) \quad \text{(for decs.)} \]

(Rem: for nearest neighbor, do binary search or "Priority" search)

can we reduce \(\log U \) to \(\log n \)?

Method 22: Balanced Quadtrees

Lemma

\[\exists \text{ quadtree cell } B \]
\[\text{s.t. } |P \cap B|, |P - B| \leq \frac{2^d}{2^{d+1}} n \]

Pf: Let \(B \) be smallest quadtree cell with \(|P \cap B| \geq \frac{1}{2^{d+1}} n \).

Then \(|P - B| \leq \frac{2^d}{2^{d+1}} n \).

For each child \(B_i \) of \(B \),
\[|P \cap B_i| < \frac{1}{2^{d+1}} \Rightarrow |P \cap B| \leq \frac{2^d}{2^{d+1}} n \]

recorse in \(P \cap B \) & \(P - B \)

\[\Rightarrow \text{ binary tree of height } \log \frac{n}{2^d} = O(\log n) \]

Query time
\[O\left(\# \text{ quadtree cells } B \text{ of side length } > \varepsilon \right) \]
\[\times \log n \]

\[= O\left(\frac{1}{\varepsilon^2} \log n \right) \]

\[\leq \sum \text{ a cell may occur in multiple nodes} \]

Ranks Known alternatives:

- BBD trees (Arya, Mount et al. '95)
- BAR trees, fair-split trees, ring-cover trees, skip quadtrees,
Method 2.3: With shifting

naive-query \((B, q)\):
find child \(B_i\) containing \(q\)

naive-query \((B_i, q)\)

When does this work?

Let \(r^*\) = nearest neighbor dist from \(q\).

Def ball \((q, r^*)\) is \(k\)-good if it lies in a quadtree cell
of side length \(<4kr^*\)

Analysis: assuming ball \((q, r^*)\) is \(k\)-good
let \(p\) be output pt.

\[\|p-q\| < 4k\sqrt{d} r^* \]

\[O(1) \text{ approx if k const} \]

Query time: \(O(\log U)\)

(can be reduced to \(O(\log \gamma)\)
by binary search in \(k\)-th order)

Shifting Lemma (Rand. Version)
[Bern'93] can make \(v_1 = \ldots = v_d\).

Shift all pts by rand. vector \(v = (v_1, \ldots, v_d) \in (0, 1)^d\).

Then ball \((q, r^*)\) is \(k\)-good with const prob if \(k > d\).

Pf. Say \(2^l \leq 4kr^* \leq 2^{l+1}\).

\[\Pr[\text{bad}] = \Pr[\text{ball}((q, r^*) \text{ crosses boundary of quadtree cell of side length } 2^l)] \]

\[\leq d \cdot \frac{2r^*}{2^l} \leq d \cdot \frac{1}{c} = \square \]
Shifting Lemma (Dot. Version) (c'98)

Let \(U = 2^w \). Say \(k \) is odd with \(k > d \).

Define \(k \) vectors \(v(c) = \left(\frac{c2^w}{k}, \ldots, \frac{c2^w}{k} \right) \), \(i = 0, \ldots, k-1 \).

Then \(V \) has \(i \) s.t. it is \(k \)-good after shifting by \(v(c) \).

In fact, for all but \(d \) indices.

Pf. Fix \(c, r \). Fix \(i \).

Bad \(\Rightarrow \) for some \(\ell \in \{1, \ldots, d\} \)

\[\left(\frac{c2^w + i2^w}{k} \right) \mod 2^\ell \neq \left(\frac{r2^\ell}{2^\ell} \right) \]

\[\Rightarrow \left(\frac{c2^w + i2^w - \ell}{2^\ell} \right) \mod k \]

\[\neq \left[\frac{r2^\ell}{2^\ell} - \frac{k}{2^\ell} \right] \]

For some \(\ell \)

\[\Rightarrow 2^{w+1} i + \left[\left(\frac{k2^w}{2^\ell} \right) \right] \equiv 0 \mod k \]

(\(ax + b \equiv 0 \mod k \)
has unique soln.
if \(a, k \) rel. prime)

\[\Rightarrow \] at most \(d \) choices of \(i \). \(\square \)

**Run: const approx \(\rightarrow 1 + \varepsilon \) approx.
query time \(O(\frac{1}{\varepsilon d \log n}) \).**

Can be improved to \(O(\frac{1}{\varepsilon^2 d^2 \log n}) \)

with \(O(\frac{1}{\varepsilon^2 d^4 n}) \) space.

(time/space trade-offs)