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Correspondence

On Expander Codes for every vertexv of V, (@,(1), Zu(2), ---» Tu(a)) is @ codeword of
Ch.
Gilles Zémor In this correspondence, we shall be concerned solely with the spe-
cial case when every vertex &f is adjacent to exactly two vertices of

. ) . . . V. Equivalently, this means thdf and £ make up, respectively, the
Abstract—Sipser and Spielman have introduced a constructive family t t and ed t of'e | . Let Il th d
of asymptotically good linear error-correcting codes—expander codes—to- vertex set and edge set oberegular grapft-. Let us call the code

gether with a simple parallel algorithm that will always remove a constant C' constructed in this way &, Co)-code. Note that for a given graph
fraction of errors. We introduce a variation on their decoding algorithm G and a given cod€’, there are several?, Cj)-codes since there are

that, with no extra cost in complexity, provably corrects up to 12 times more several ways of numbering the edgeml']d several ways of Ordering

errors. the edges incident to a given vertexi.e.,v(1), v(2), ..., v(A).
Index Terms—becoding, expander code, Ramanujan graph. GraphsG will be assumed to be connected and without multiple
edges.

|. INTRODUCTION
. ) . ) _ B. Expander Codes
In [1], Sipser and Spielman introduced a constructive family of

asymptotically good linear error-correcting codes together with aSUPPOse the cod€’, has lengthA, dimensionk,, redundancy

simple parallel algorithm that will always remove a constant fractioff = 2 — ko, and minimum distance,. Then the dimension of a
of errors. G, Cy)-codeC is at leastV (1 — 2rq/A) [2]. Sipser and Spielman

More precisely, they prove [1, Theorem 19]. [1] have found an elegant lower bound on the minimum distafice

of C' of the form
Theorem 1 (Sipser—Spielman)For all 5, such thail —2H (éy) >0,

where H(-) is the binary entropy function, there exists a polyno- D> N&2(1--2) 1)
mial-time constructible family of expander codes of rate 2H (4q) =0

and minimum relative distance arbitrarily close & in which any whereso = do/A is the relative minimum distance @, and= de
0 = do/! 0 c de-

o < 63/48 fraction of error can be corrected by a circuit of sizepends only ol and graphical parameters 61 More preciselys is
T o N - N N i ; "0 - ¥ .
O(N log V) and deptO(log V) whereXV'is the length of the code. a function ofdoy, A, and), the second largest eigenvalue of the adja-

In one of the two open questions of [1], Sipser and Spielman askncy matrix of7. Furthermores is such that — 0 when\/dy — 0.
whether one can obtain better constants from the construction of tHeis result becomes especially interesting when one brings in the Ra-
above theorem. manujan graphs of [3], [4]. These families of graphs are constructive,

To obtain such an improvement we shall introduce a variation dvave an arbitrarily large number of vertices for fixed degragsand
their decoding algorithm. It will enable us to replace in Theorem 1 tigatisfyA < 2+/A — 1. By choosing& to be Ramanujan and fixing a
correction of “anyw < &3 /48 fraction of error by “anya < é3/4.”  large enough we can, therefore, makeas small as we like and ob-
Formally, Theorem 1 is improved to the following. tain constructions of asymptotically godd:, Cy)-codes that Sipser

) . and Spielman named “expander codes” in reference to the expanding
Theorem 1A: For all§, suchthal —2H (60) > 0, whereH (-) isthe roperties of Ramanujan graphs.

binary entropy function, there exists a polynomial-time constructlbeFor example, if Co is chosen to be a shortened extended

La_lmlly of ezpand_ler clzode%gof raﬂﬁ_—hQH(éo) a;zd inflnlm_um r;alatwe Bose—Chaudhuri-Hocquenghem (BCH) code of lenytk- 224, di-
istance arbitrarily close # in which anya < & /4 fraction of error mensionk, = 115, and minimum distance proved to satigly > 30

can be corrected by a circuit of sicé V log N) and deptfD(log N). [5] then it can be checked that Ramanujan graghef degree224
(constructed in [4], [3]) yield asymptotically godd+, C) codes.

Il. CONTEXT AND MAIN RESULT Furthermore, Sipser and Spielman exhibit a decoding algorithm
of low complexity, namely, timeO(log N) for a circuit of size
A. Codes and Graphs O(N log N) that, for any fixeda < 1, will always return the

The following construction of a binary code was first proposed bgriginal codeword provided the error vector has weight less than
Tanner [2]. Take a bipartite graph with vertex &t V" where edges aN&3(1 — =)/48: again,= is a quantity that depends only da, A,
exist only between vertices @& and vertices o¥: suppose that every andA and is such that — 0 when\/dy — 0.
vertex ofV' is adjacent to exactly vertices ofE. Number the vertices  SinceA can be fixed andV can grow to infinity one can choose the
of F,ie.,letEF = {1,2,... N}. LetC, be a linear code of length best known codes faf’, i.e., on the Varshamov—Gilbert bound: this

A. For any vertexw € V definev(1), v(2), ..., v(A) to be some yields Theorem 1.
ordering of theA vertices ofZ’ adjacent ta. Define the cod€’ to be We shall study a variation on their decoding scheme for
the set of binary vectors = (i, 2, ..., zn) of {0, 1}V suchthat, (G, Co)-codes that yields the following.

Theorem 2: Leta < 1 be fixed. Wher is a bipartite graph there is
' _ _ a decoding algorithm fofG, C,) codes that can be implemented as a
Manuscript received December 13, 1999; revised September 11, 2000. jrcuit of sizeO(N log N) and depttD(log N), that always returns

The author is with Ecole Nationale Supérieure des Télécommunications, (5 _ . . . :
634 Paris 13, France (e-mail: zemor@infres.enst.fr). t?‘ne original codeword provided the error vector has weight less than

Communicated by D. A. Spielman, Guest Editor. aN & (1—¢)/4: < is a quantity that depends only dp, A, and\, and
Publisher Item Identifier S 0018-9448(01)00734-9. is such that — 0 when)/dy — 0.

0018-9448/01$10.00 © 2001 IEEE



836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Hence, Theorem 1A. The restriction th@t be bipartite is not a  Note that this last upper bound reduces to that of Lemma 3 when
problem since this is the case of about half the known constructio$§ = |T'| but is more precise otherwise.
of Ramanujan graphs. Since the proof of Lemma 4 is fairly independent of the decoding
issues we postpone it to the next section. For our purposes its principal
consequence is the following lemma which summarizes the technical
part of our analysis.

Ill. DECODING
A. The Decoding Algorithm

This algorithm works wheld is abipartite A-regular graph.

Let the set of vertices aff beV = AU B where|A| = |B| =n
and where every edge 6f has one endpoint id and one inB. 1S < an <5_o _ i) )

For any vertex of G the subset of edges incidentitds -

Lemma 5: Supposel, > 3A. Let S be a subset of vertices of
such that

2 A

wherea < 1. LetT be a subset of vertices &f and suppose that there
exists a set” C E of edges such that

1) every edge o} has one of its endpoints ifi;

E, = {v(1), v(2), ..., v(A)}.

Because- is bipartite, the sett of vertlges |nduc¢s _the partition of 2) every vertex o is incident to at leasto /2 edges off”.
the edge set’ = |J,., £». The setB induces similarly a second
partition, namelyE = |, Eo. Then

Letz € {0, 1}V be the received vector, and recall that= An. 1< 1
The first iteration of the algorithm consists of applying complete de- 1Tl <
coding for the code induced b, for everyv € A. This means re-
placing, for every € A, the vectorz, 1y, #y(2). -- -, Zya)) Dy One
of the closest codewords 6f, (which might not be unique). Because
the subsets of edgds, are disjoint forv € A4, the decoding of these

7o |S].
Proof: Let W C Y consist of those edges &f that have one
endpointin?’. ThenW must be included in the set of edge<ofur,
the subgraph induced U T'. ThereforeG s, has the average de-
n subvectors of: may be done in parallel. gree greater or equal W |/(|S|+|T’|) and by point 2) we must have

This iteration yields a new vectar. The next iteration consists of |7 190/2 < [W], therefore, by Lemma 4
applying the preceding proceduregdut with A replaced byB. In T do 2187 A
other words, it consists of decoding all the subvectors induced by the IST+17] = 1S[+ 7] N
vertices of B. The next iterations repeat those two steps, alternately
applying parallel decoding to the subvectors induced by the verticesstience, applying (2) anéhA = do
A and to the subvectors induced by the vertice®of

Theorem 6 of the next section will give a sufficient condition on the |T|do <aldo —20)|T|+ X(|S|+ |T))
number of corrupted bits for this algorithm to converge. 7| < A B

“do(l—a)+A2a—1) 7"

Remark: If A = n andd is the complete bipartite graph, théh
is a product code of’, with itself and the above algorithm reduces tqqence the result, usingy > 3. O

the natural hard iterative decoding of product codes. )
We are now ready to prove the following theorem.

B. Analysis Theorem 6: Supposel, > 3. If the weight of the error vectar
In Sipser and Spielman’s analysis(@¥, Cy)-codes the basic tool is Satisfies

the following result of Alon and Chung [6] upper-bounding the average S (6 A )

degree of an induced subgraph. Tdegreeof a vertex is the number |2 < a = <7 - K) N ®3)

of edges incident to it. I is a subset of vertices @ the subgraph
induced byS is the graphG's with vertex setS and edge sefs where for anya < 1, then the algorithm of Section IlI-A converges to the
Es is the set of all the edges 6f that have both endpoints #. The initial codeword in a number of parallel steps logarithmic\in
average degreef Gs is ds = 2|Es|/|S|. We have the following Proof: Because of linearity we may suppose, without loss of gen-
lemma. erality, that the initial uncorrupted codeword is the zero codeword. Let
x be the error vector and let us identify it with the corresponding set
of edgesX = {7, x; = 1}. Lety be the vector obtained from after
the first decoding step (induced by), and letY” = {i, y; = 1} be
the corresponding set of edges. Lebe the vector obtained after the
seconddecoding step and léf be the corresponding set of edges.
ds < A@ + A <1 - @> . We start by looking at the partitions of and ofY induced by
n n (E.)uea. Letv € A. The key observation is that if is incident to
less thanly /2 edges ofX, then these will be totally erased by the de-
We shall need the following generalization of Lemma 3. coding procedure, i.eF, NY = (. Let S be the set of vertices of A
such thatF, NY # 0. We have just observed that

Lemma 3 (Alon—Chung) Let G be aA-regular graph on vertices
with second largest eigenvalue Let .S be a subset of vertices. Then
the average degrek of the subgraph induced iy satisfies

Lemma4: LetG be aA-regular bipartite graph with vertex sétB

where|4| = |B| = n and where every edge has one endpointin veES implies |E,NX|>do/2. 4
and one inB. LetS C A andT C B. Then the average degréer B
of the subgraph induced Wy U T satisfies Similarly, letT be the set of vertices of B such thatt, N Z # (); we

also have, for the same reason
25071 A L\ A |S|* + |7

dep < =121 = Ll IS ol I .
dsr < S|+ |T] n n S|+ |T] v €T implies |E,NY| > do/2. (5)
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Let us now check thats, T, and Y satisfy the conditions of wheredsr is the average degree in the induced subgt@ghr . There
Lemma 5. remains the computation ¢t s~||”. Note thatY sz has|S| coordi-
Observation (4) impliesX | > |S|do/2. Together with (3) and since nates equal té — |S|/n, |T| coordinates equal to— |T'|/n, n — |S|
N = An, thisimplies thatS| satisfies (2). Point 1) of Lemma 5 holdscoordinates equal te|S|/», andrn— |T'| coordinates equal to |T'| /.
by the definition ofS. Point 2) of Lemma 5 holds by (5). After some rearranging we obtain
Therefore, the conclusion of Lemma 5 holds and we have y IS|2 + |T2
o IYsrll” =S|+ IT| -
IT| < B1S]| _ o
with 3 =1/(2—-«a) < 1. Together with (7) this yields Lemma 4.

The proof of convergence consists of repeating the argument. For

i > 1let X be the set of edges in error after decoding stefor REFERENCES
i>0,let S pe the set of vertices defined as [1] M. Sipser and D. A. Spielman, “Expander Codd&EE Trans. Inform.
- ) ) Theory vol. 42, pp. 1710-1722, Nov. 1996.
o SO = {veAd E,N XU+ o« @} if i is even [2] M. Tanner, “A recursive approach to Low-complexity coded5EE
. o) _ 1, ~(i+1) P Trans. Inform. Theoryol. IT-27, pp. 533-547, Sept. 1981.
S ={veB, E,NX # 0} if i is odd. [3] A.Lubotsky, R. Philips, and P. Sarnak, “Ramanujan grapBsynbina-

torica, vol. 8, no. 3, pp. 261-277, 1988.

; (1) . (1)
We have just proved thadS* | < /|S|. Therefore, 5T also [4] G. A. Margulis, “Explicit group theoretical constructions of combinato-

. - 2 Ps
satisfies (2) and we haves™”| < 3|S™| and more generally rial schemes and their application to the design of expanders and con-
S| < 3°|S]. WhenS™® = @ thenX@+D = ¢ and the decoding is centrators, Probl. Inform. Transm.vol. 24, no. 1, pp. 39-46, 1988.
complete. O [5] F.J.MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
R Codes Amsterdam, The Netherlands: Elsevier, 1977.
Remark: The above proof consisted of showing that the St [6] N. Alon and F. R. K. Chung, “Explicit construction of linear sized tol-

have strictly decreasing cardinalities. The weight of the error vector, ~ erant networks,Discr. Math, vol. 72, pp. 15-19, 1988.
however, does not necessarily decrease at each iteration.

Theorem 2 is a direct consequence of Theorem 6.

IV. A PROOF OFLEMMA 4

The proof is very much in the spirit of [6]. Probability Propagation and Decoding in Analog VLSI

Let A = (a;j) be the2n x 2n adjacency matrix of the bipartite Hans-Andrea LoeligerMember, IEEE
graph, i.e..a;; = 1if the vertexindexed byis adjacent to the vertex Felix LustenbergerStudent Member, IEEEMa’rkus Helfenstein, and
indexed by;j anda;; = 0 otherwise; a fixed ordering of the vertices Felix Tarkoy, Mer‘nber IEEE '
is assumed but does not influence the computations to com& &gt ' '
be the column vector of lengv. such that every coordinate indexed

by a vertex ofS or of T equalsl and the other coordinates equalt Abstract—The sum-product algorithm (belief/probability propagation)
is straightforward to check that can be naturally mapped into analog transistor circuits. These circuits en-
able the construction of analog-VLSI decoders for turbo codes, low-density
‘XerAXgr = Z dag (V) (6) parity-check codes, and similar codes.
veSUT Index Terms—Analog circuits, belief propagation, factor graphs, itera-

wheredq . . (v) stands for the degree ofin the subgraph induced by tive decoding, turbo codes.
S UT,i.e., the number of neighbors ofthat belong ta5 or to 7.

Now let j be the all-one vector and lét be the vector such that
every coordinate indexed by a vertexfequalsl and every coordi-
nate indexed by a vertex d? equals—1. j andk are eigenvectors of It has recently been observed that a number of important algorithms
A associated to the eigenvaluasand— A, respectively. Next define in error-control coding, signal processing, and computer science can

|. INTRODUCTION

Y sr as the vector such that be interpreted as instances of a general “sum-product algorithm”
IS|+|T| .  |8|-|T which operates by message passing on a graph (the factor graph [1],
Xsr = on Y + n k+Ysr. [2]; see also Aji and McEliece [3]). These algorithms include the

It is straightforward to check thaf st is orthogonal tgj andk. Be- forward—backward [Bahl-Cocke-Jelinek—Raviv (BCJR)] algorithm

cause the eigenspacesfare orthogonal we can therefore write
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'XsrAXsp = <7) j - — < ) Ak -k work of H.-A. Loeliger was supported by the Swiss National Science Founda-
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+tYSTAYST at the 1998 IEEE International Symposium on Information Theory, Cambridge,
MA, August 16-21, 1998, and at several other conferences.
which reduces to, singg- j = k- k = 2n, H.-A. Loeliger was with Endora Tech AG, Basel, Switzerland. He is now
|S||T| with the Signal and Information Processing Laboratory (ISI), ETH Zentrum,
CH-8092 Zurich, Switzerland.
F. Lustenberger is with the Signal and Information Processing Laboratory
Now, sinceY s is orthogonal tg and since the elgenspace associatedBl), ETH Zentrum, CH-8092 Zirich, Switzerland.
to the eigenvalue\ is of dimension one is connected) we have M. Helfenstein was with ISI/ETH Zurich, Switzerland. He is now with Globe-

t 2 . . span Semiconductor Inc., Red Bank, NJ 07701 USA.
YsrAY st < MY sr|[*. Together with (6) we obtain therefore F. Tarkoy is with Endora Tech AG, CH-4051 Basel, Switzerland.
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‘XsrAXsr ='YsrAY 57 + 27—

(IS|+|TDdst < MYsr|* +2°= =
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