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On Expander Codes

Gilles Zémor

Abstract—Sipser and Spielman have introduced a constructive family
of asymptotically good linear error-correcting codes—expander codes—to-
gether with a simple parallel algorithm that will always remove a constant
fraction of errors. We introduce a variation on their decoding algorithm
that, with no extra cost in complexity, provably corrects up to 12 times more
errors.

Index Terms—Decoding, expander code, Ramanujan graph.

I. INTRODUCTION

In [1], Sipser and Spielman introduced a constructive family of
asymptotically good linear error-correcting codes together with a
simple parallel algorithm that will always remove a constant fraction
of errors.

More precisely, they prove [1, Theorem 19].

Theorem 1 (Sipser–Spielman):For all�0 such that1�2H(�0)>0;
whereH(�) is the binary entropy function, there exists a polyno-
mial-time constructible family of expander codes of rate1 � 2H(�0)
and minimum relative distance arbitrarily close to�20 in which any
� < �20=48 fraction of error can be corrected by a circuit of size
O(N log N) and depthO(log N) whereN is the length of the code.

In one of the two open questions of [1], Sipser and Spielman ask
whether one can obtain better constants from the construction of the
above theorem.

To obtain such an improvement we shall introduce a variation on
their decoding algorithm. It will enable us to replace in Theorem 1 the
correction of “any� < �20=48” fraction of error by “any� < �20=4.”
Formally, Theorem 1 is improved to the following.

Theorem 1A: For all�0 such that1�2H(�0) > 0, whereH(�) is the
binary entropy function, there exists a polynomial-time constructible
family of expander codes of rate1 � 2H(�0) and minimum relative
distance arbitrarily close to�20 in which any� < �20=4 fraction of error
can be corrected by a circuit of sizeO(N log N) and depthO(log N).

II. CONTEXT AND MAIN RESULT

A. Codes and Graphs

The following construction of a binary code was first proposed by
Tanner [2]. Take a bipartite graph with vertex setE [ V where edges
exist only between vertices ofE and vertices ofV : suppose that every
vertex ofV is adjacent to exactly� vertices ofE. Number the vertices
of E, i.e., letE = f1; 2; . . .Ng. Let C0 be a linear code of length
�. For any vertexv 2 V definev(1); v(2); . . . ; v(�) to be some
ordering of the� vertices ofE adjacent tov. Define the codeC to be
the set of binary vectorsx = (x1; x2; . . . ; xN) of f0; 1gN such that,
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for every vertexv of V , (xv(1); xv(2); . . . ; xv(�)) is a codeword of
C0.

In this correspondence, we shall be concerned solely with the spe-
cial case when every vertex ofE is adjacent to exactly two vertices of
V . Equivalently, this means thatV andE make up, respectively, the
vertex set and edge set of a�-regular graphG. Let us call the code
C constructed in this way a(G; C0)-code. Note that for a given graph
G and a given codeC0 there are several(G; C0)-codes since there are
several ways of numbering the edges ofG and several ways of ordering
the edges incident to a given vertexv, i.e.,v(1); v(2); . . . ; v(�).

GraphsG will be assumed to be connected and without multiple
edges.

B. Expander Codes

Suppose the codeC0 has length�, dimensionk0, redundancy
r0 = � � k0, and minimum distanced0. Then the dimension of a
(G; C0)-codeC is at leastN(1 � 2r0=�) [2]. Sipser and Spielman
[1] have found an elegant lower bound on the minimum distanceD
of C of the form

D � N�20(1� ") (1)

where�0 = d0=� is the relative minimum distance ofC0 and" de-
pends only ond0 and graphical parameters ofG. More precisely," is
a function ofd0, �, and�, the second largest eigenvalue of the adja-
cency matrix ofG. Furthermore," is such that"! 0 when�=d0 ! 0.
This result becomes especially interesting when one brings in the Ra-
manujan graphs of [3], [4]. These families of graphs are constructive,
have an arbitrarily large number of vertices for fixed degrees�, and
satisfy� � 2

p
�� 1. By choosingG to be Ramanujan and fixing a

large enough� we can, therefore, make" as small as we like and ob-
tain constructions of asymptotically good(G; C0)-codes that Sipser
and Spielman named “expander codes” in reference to the expanding
properties of Ramanujan graphs.

For example, if C0 is chosen to be a shortened extended
Bose–Chaudhuri–Hocquenghem (BCH) code of length� = 224, di-
mensionk0 = 115, and minimum distance proved to satisfyd0 � 30
[5] then it can be checked that Ramanujan graphsG of degree224
(constructed in [4], [3]) yield asymptotically good(G; C0) codes.

Furthermore, Sipser and Spielman exhibit a decoding algorithm
of low complexity, namely, timeO(log N) for a circuit of size
O(N log N) that, for any fixed� < 1, will always return the
original codeword provided the error vector has weight less than
�N�20(1 � ")=48: again," is a quantity that depends only ond0, �,
and� and is such that" ! 0 when�=d0 ! 0.

Since� can be fixed andN can grow to infinity one can choose the
best known codes forC0, i.e., on the Varshamov–Gilbert bound: this
yields Theorem 1.

We shall study a variation on their decoding scheme for
(G; C0)-codes that yields the following.

Theorem 2: Let� < 1 be fixed. WhenG is a bipartite graph there is
a decoding algorithm for(G; C0) codes that can be implemented as a
circuit of sizeO(N log N) and depthO(log N), that always returns
the original codeword provided the error vector has weight less than
�N�20(1�")=4: " is a quantity that depends only ond0,�, and�, and
is such that" ! 0 when�=d0 ! 0.
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Hence, Theorem 1A. The restriction thatG be bipartite is not a
problem since this is the case of about half the known constructions
of Ramanujan graphs.

III. D ECODING

A. The Decoding Algorithm

This algorithm works whenG is abipartite�-regular graph.
Let the set of vertices ofG beV = A [ B wherejAj = jBj = n

and where every edge ofG has one endpoint inA and one inB.
For any vertexv of G the subset of edges incident tov is

Ev = fv(1); v(2); . . . ; v(�)g:

BecauseG is bipartite, the setA of vertices induces the partition of
the edge setE =

v2A
Ev . The setB induces similarly a second

partition, namely,E =
v2B

Ev .
Let x 2 f0; 1gN be the received vector, and recall thatN = �n.

The first iteration of the algorithm consists of applying complete de-
coding for the code induced byEv for everyv 2 A. This means re-
placing, for everyv 2 A, the vector(xv(1); xv(2); . . . ; xv(�)) by one
of the closest codewords ofC0 (which might not be unique). Because
the subsets of edgesEv are disjoint forv 2 A, the decoding of these
n subvectors ofx may be done in parallel.

This iteration yields a new vectory. The next iteration consists of
applying the preceding procedure toy but withA replaced byB. In
other words, it consists of decoding all the subvectors induced by the
vertices ofB. The next iterations repeat those two steps, alternately
applying parallel decoding to the subvectors induced by the vertices of
A and to the subvectors induced by the vertices ofB.

Theorem 6 of the next section will give a sufficient condition on the
number of corrupted bits for this algorithm to converge.

Remark: If � = n andG is the complete bipartite graph, thenC
is a product code ofC0 with itself and the above algorithm reduces to
the natural hard iterative decoding of product codes.

B. Analysis

In Sipser and Spielman’s analysis of(G; C0)-codes the basic tool is
the following result of Alon and Chung [6] upper-bounding the average
degree of an induced subgraph. Thedegreeof a vertex is the number
of edges incident to it. IfS is a subset of vertices ofG thesubgraph
induced byS is the graphGS with vertex setS and edge setES where
ES is the set of all the edges ofG that have both endpoints inS. The
average degreeof GS is dS = 2jES j=jSj. We have the following
lemma.

Lemma 3 (Alon–Chung) :LetG be a�-regular graph onn vertices
with second largest eigenvalue�. Let S be a subset of vertices. Then
the average degreedS of the subgraph induced byS satisfies

dS � �
jSj

n
+ � 1�

jSj

n
:

We shall need the following generalization of Lemma 3.

Lemma 4: LetG be a�-regular bipartite graph with vertex setA[B
wherejAj = jBj = n and where every edge has one endpoint inA
and one inB. Let S � A andT � B. Then the average degreedST
of the subgraph induced byS [ T satisfies

dST �
2jSkT j

jSj + jT j

�

n
+ ��

�

n

jSj2 + jT j2

jSj + jT j
:

Note that this last upper bound reduces to that of Lemma 3 when
jSj = jT j but is more precise otherwise.

Since the proof of Lemma 4 is fairly independent of the decoding
issues we postpone it to the next section. For our purposes its principal
consequence is the following lemma which summarizes the technical
part of our analysis.

Lemma 5: Supposed0 � 3�. Let S be a subset of vertices ofA
such that

jSj � �n
�0
2
�

�

�
(2)

where� < 1. LetT be a subset of vertices ofB and suppose that there
exists a setY � E of edges such that

1) every edge ofY has one of its endpoints inS;
2) every vertex ofT is incident to at leastd0=2 edges ofY .
Then

jT j �
1

2� �
jSj:

Proof: Let W � Y consist of those edges ofY that have one
endpoint inT . ThenW must be included in the set of edges ofGS[T ,
the subgraph induced byS [ T . Therefore,GS[T has the average de-
gree greater or equal to2jW j=(jSj+ jT j) and by point 2) we must have
jT jd0=2 � jW j, therefore, by Lemma 4

jT jd0
jSj+ jT j

�
2jSkT j

jSj + jT j

�

n
+ �

whence, applying (2) and�0� = d0

jT jd0 ��(d0 � 2�)jT j+ �(jSj+ jT j)

jT j �
�

d0(1� �) + �(2�� 1)
jSj:

Hence the result, usingd0 � 3�.

We are now ready to prove the following theorem.

Theorem 6: Supposed0 � 3�. If the weight of the error vectorx
satisfies

jxj � �
�0
2

�0
2
�

�

�
N (3)

for any� < 1, then the algorithm of Section III-A converges to the
initial codeword in a number of parallel steps logarithmic inN .

Proof: Because of linearity we may suppose, without loss of gen-
erality, that the initial uncorrupted codeword is the zero codeword. Let
x be the error vector and let us identify it with the corresponding set
of edgesX = fi; xi = 1g. Let y be the vector obtained fromx after
the first decoding step (induced byA), and letY = fi; yi = 1g be
the corresponding set of edges. Letz be the vector obtained after the
seconddecoding step and letZ be the corresponding set of edges.

We start by looking at the partitions ofX and ofY induced by
(Ev)v2A. Let v 2 A. The key observation is that ifv is incident to
less thand0=2 edges ofX, then these will be totally erased by the de-
coding procedure, i.e.,Ev \Y = ;. LetS be the set of verticesv ofA
such thatEv \ Y 6= ;. We have just observed that

v 2 S implies jEv \Xj � d0=2: (4)

Similarly, letT be the set of verticesv of B such thatEv \Z 6= ;; we
also have, for the same reason

v 2 T implies jEv \ Y j � d0=2: (5)
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Let us now check thatS; T; and Y satisfy the conditions of
Lemma 5.

Observation (4) impliesjXj � jSjd0=2. Together with (3) and since
N = �n, this implies thatjSj satisfies (2). Point 1) of Lemma 5 holds
by the definition ofS. Point 2) of Lemma 5 holds by (5).

Therefore, the conclusion of Lemma 5 holds and we have

jT j � �jSj

with � = 1=(2 � �) < 1.
The proof of convergence consists of repeating the argument. For

i � 1 let X(i) be the set of edges in error after decoding stepi. For
i � 0, letS(i) be the set of vertices defined as

• S(i) = fv 2 A; Ev \X(i+1) 6= ;g if i is even

• S(i) = fv 2 B; Ev \X(i+1) 6= ;g if i is odd.

We have just proved thatjS(1)j � �jSj. Therefore,S(1) also
satisfies (2) and we havejS(2)j � �jS(1)j and more generally
jS(i)j � �ijSj. WhenS(i) = ; thenX(i+1) = ; and the decoding is
complete.

Remark: The above proof consisted of showing that the setsS(i)

have strictly decreasing cardinalities. The weight of the error vector,
however, does not necessarily decrease at each iteration.

Theorem 2 is a direct consequence of Theorem 6.

IV. A PROOF OFLEMMA 4

The proof is very much in the spirit of [6].
Let AAA = (aaaijijij) be the2n � 2n adjacency matrix of the bipartite

graphG, i.e.,aij = 1 if the vertex indexed byi is adjacent to the vertex
indexed byj andaij = 0 otherwise; a fixed ordering of the vertices
is assumed but does not influence the computations to come. LetXXXSTSTST

be the column vector of length2n such that every coordinate indexed
by a vertex ofS or of T equals1 and the other coordinates equal0. It
is straightforward to check that

tXXXSTSTSTAXAXAXSTSTST =
vvv2SSS[TTT

dddGGG (vvv) (6)

wheredG (v) stands for the degree ofv in the subgraph induced by
S [ T , i.e., the number of neighbors ofv that belong toS or toT .

Now let jjj be the all-one vector and letkkk be the vector such that
every coordinate indexed by a vertex ofA equals1 and every coordi-
nate indexed by a vertex ofB equals�1. jjj andkkk are eigenvectors of
AAA associated to the eigenvalues� and��, respectively. Next define
YYY STSTST as the vector such that

XXXSTSTST =
jSSSj+ jTTT j

2n2n2n
jjj +

jSSSj � jTTT j

2n2n2n
kkk + YYY STSTST :

It is straightforward to check thatYYY STSTST is orthogonal tojjj andkkk. Be-
cause the eigenspaces ofAAA are orthogonal we can therefore write

tXXXSTSTSTAAAXXXSTSTST =
jSj + jT j

2n

2

�jjj � jjj �
jSSSj � jTTT j

2n2n2n

2

�kkk � kkk

+tttYYY STSTSTAAAYYY STSTST

which reduces to, sincejjj � jjj = kkk � kkk = 2n2n2n,

tXXXSTSTSTAXAXAXSTSTST = tttYYY STSTSTAYAYAY STSTST + 222
jSSSkTTT j

nnn
�:

Now, sinceYYY STSTST is orthogonal tojjj and since the eigenspace associated
to the eigenvalue� is of dimension one (G is connected) we have
tYYY STSTSTAYAYAY STSTST � �kYYY STSTST k

222. Together with (6) we obtain therefore

(jSj+ jT j)dST � �kYYY STSTST k
222 + 222

jSSSkTTT j

nnn
� (7)

wheredST is the average degree in the induced subgraphGS[T . There
remains the computation ofkYYY STSTST k

222. Note thatYYY STSTST hasjSj coordi-
nates equal to1� jSj=n, jT j coordinates equal to1� jT j=n, n� jSj
coordinates equal to�jSj=n, andn�jT j coordinates equal to�jT j=n.
After some rearranging we obtain

kYYY STSTST k
222 = jSSSj+ jTTT j �

jSSSj222 + jTTT j222

nnn
:

Together with (7) this yields Lemma 4.
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Probability Propagation and Decoding in Analog VLSI
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Abstract—The sum-product algorithm (belief/probability propagation)
can be naturally mapped into analog transistor circuits. These circuits en-
able the construction of analog-VLSI decoders for turbo codes, low-density
parity-check codes, and similar codes.

Index Terms—Analog circuits, belief propagation, factor graphs, itera-
tive decoding, turbo codes.

I. INTRODUCTION

It has recently been observed that a number of important algorithms
in error-control coding, signal processing, and computer science can
be interpreted as instances of a general “sum-product algorithm”
which operates by message passing on a graph (the factor graph [1],
[2]; see also Aji and McEliece [3]). These algorithms include the
forward–backward [Bahl–Cocke–Jelinek–Raviv (BCJR)] algorithm
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