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Iterative Methods for Linear System Solving

Given linear system Ax = b, we could solve them via direct
methods such as Gaussian elminiation. But such algorithms
can be very slow, especially when A is sparse.

Iterative algorithms solve linear equations while only
performing multiplications by A and a few other vector
operations. They do not find exact solutions, but they get
closer to the solution with each iteration.

Throughout this presentation we will assume that A is
positive definite or positive semidefinite.
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First-Order Richardson Iteration

Richardson’s iteration is an iterative process that has the solution
to Ax = b as a fixed point. Note that if Ax = b, then for any α,

αAx = αb

x + (αA− I )x = αb

x = (I − αA)x + αb

The last step can be viewed as an iterative update. It converges if
I − αA has norm less than 1, the convergence rate depends on
how much the norm is less than 1.
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Convergence Rate of Richardson Iteration

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of A, then the
eigenvalues of I − αA are 1− αλi , and the norm of I − αA is:

max(|1− αλ1|, |1− αλn|)

It is minimized by

α =
2

λn + λ1

And the norm is

1− 2λ1
λn + λ1
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Convergence Rate of Richardson Iteration

The update formula of Richardson Iteration

x (t+1) = (I − αA)x (t) + αb

Rearranging the terms, we see that:

x− x(t) = (I − αA)(x− x(t−1))

Thus we can get ε-approximation of x by running for about

λn + λ1
2λ1

ln(1/ε) = (
λn
2λ1

+
1

2
) ln(1/ε)

iterations.
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Polynomial approximation of the inverse

Another way of viewing Richardson’s iteration is that it provides us
with a polynomial in A that approximates A−1. In particular, it
can be expressed as:

x(t) = pt(A)b

where pt is a polynomial of degree t.
Our goal is

||pt(A)b− x|| = ||pt(A)Ax− x|| ≤ ε||x||

In general a polynomial pt computes a solution to precision ε if

||Apt(A)− I || ≤ ε
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Better Polynomials

Thus, if we can find better polynomials pt that approximates A−1,
we can find better iterative methods. Note that the eigenvalues of
Apt(A)− I are λip

t(λi )− 1, therefore it suffices to find a
polynomial pt such that

|λipt(λi )− 1| ≤ ε

Define q(x) = 1− xpt(x), then it suffices to find a polynomial q of
degree t + 1 such that

q(0) = 1

|q(x)| ≤ ε, for x ∈ [λ1, λn]
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Chebyshev Polynomials

We can construct such q using the Chebyshev polynomials. The
tth Chebyshev polynomial, written as Tt , can be defined as the
polynomial such that

cos(tx) = Tt(cos(x))

Following the definition, it is easy to see that −1 ≤ Tt(x) ≤ 1 for
all x ∈ [−1, 1]. For values outside [−1, 1], we have the following
property:

Tt(1 + γ) ≥ (1 +
√

2γ)t/2, for γ > 0

It means that Tt(x) grows very quickly on x ∈ [1,∞].
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Chebyshev Polynomials

We perform a linear map on Tt so that [−1, 1] is mapped to
[λmin, λmax]. More specifically, we define

l(x) =
λmax + λmin − 2x

λmax − λmin

so that
l(x) ∈ [−1, 1], for x ∈ [λmin, λmax]

Let

q(x) =
Tt(l(x))

Tt(l(0))

It is obvious that q(0) = 1.
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Chebyshev Polynomials

q(x) =
Tt(l(x))

Tt(l(0))

Note that for x ∈ [λmin, λmax], l(x) ∈ [−1, 1],Tt(l(x)) ∈ [−1, 1].
As for Tt(l(0)), notice that

l(0) = 1 +
2λmin

λmax − λmin

Thus, using the property of Chebyshev Polynomials, we get

q(x) ≤ 2(1 + 2
√
λmin/λmax)−t , for x ∈ [λmin, λmax]
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Conjugate Gradient

Sometimes, it is useful to measure error in the matrix norm, which
is defined by:

||x ||A =
√
xTAx

Conjugate Gradient Algorithm is one such algorithm that
minimizes the matrix norm of residual. It begins with vector b, and
after t iterations it produces a vector that is in the span of

{b,Ab,A2b, . . . ,Atb}

The Conjugate Gradient will find the vector xt in this subspace
that minimizes the error in the A-norm. In other words, Conjugate
Gradient method is the optimal iterative method in terms of
A-norm.
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Error in A-norm

||xt − x ||2A = xTt Axt − 2xTAxt + xTAx = xTt Axt − 2bT xt + xTAx

Let p0, . . . , pt be a basis of this subspace, and let

xt =
t∑

i=0

cipi

Then we have,

xTt Axt − 2bT xt = (
t∑

i=0

cipi )
TA(

t∑
i=0

cipi )− 2bT (
t∑

i=0

cipi )

=
t∑

i=0

c2i p
T
i Api − 2

t∑
i=0

cib
Tpi +

∑
i 6=j

cicjp
T
i Apj
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Conjugate Gradient Algorithm

||xt − x ||2A =
t∑

i=0

c2i p
T
i Api − 2

t∑
i=0

cib
Tpi +

∑
i 6=j

cicjp
T
i Apj + const

To simplify the optimization, the Conjugate Gradient will choose pi
such that pTi Apj = 0 for all i 6= j . In that case, the objective
function becomes

t∑
i=0

(c2i p
T
i Api − 2cib

Tpi )

This is minimized by setting derivatives to zero, which gives

ci = (bTpi )/(pTi Api )
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Computing the basis vectors

pi can be computed methods similar to Gram-Schmidt Process

pt+1 = Apt −
t∑

i=0

pi
(Apt)

TApi

pTi Api

Actually the last summation only has two non-zero terms since Api
is in the span of p0, . . . , pi+1 and is orthogonal to Apt when
i < t − 1. Therefore each iteration of Conjugate Gradient takes
O(1) matrix multiplication and O(1) vector operations.
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Preconditioning

Preconditioning is an approach to solving linear equations in a
matrix A by finding a matrix B that approximates A, but easier to
solve. Remember that B is an ε-approximation of A if

(1− ε)A � B � (1 + ε)A

We show that if A is an ε-approximation of B, then B−1b is not
far from x in A-norm.

||B−1b − x ||A = ||A1/2B−1b − A1/2x ||
= ||A1/2B−1(Ax)− A1/2x ||
≤ ||A1/2B−1A1/2 − I ||||A1/2x ||
= ||A1/2B−1A1/2 − I ||||x ||A

Yihan Gao

Iterative Solvers for Linear Systems and Preconditioning



Richardson Iteration Chebyshev Method Conjugate Gradient Preconditioning Preconditioned Solvers for Laplacians

Preconditioning

||B−1b − x ||A ≤ ||A1/2B−1A1/2 − I ||||x ||A
Note that A1/2B−1A1/2 is similar to B−1/2AB−1/2, therefore

λmax(A1/2B−1A1/2) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xT x

= max
y=B−1/2x

yTAy

yTBy

≤ 1 + ε

Similarly, λmin(A1/2B−1A1/2) ≥ 1− ε, therefore,

||A1/2B−1A1/2 − I || ≤ ε

Yihan Gao

Iterative Solvers for Linear Systems and Preconditioning



Richardson Iteration Chebyshev Method Conjugate Gradient Preconditioning Preconditioned Solvers for Laplacians

Preconditioned Iterative Methods

Preconditioning can be applied together with iterative methods, if
B can be easily inverted, then we can trasnform the equations by:

B−1Ax = B−1b

Then we can use iterative methods on matrix B−1A, but whenever
we need to compute B−1Ax for some vector x , we first compute
Ax , then use a solver of B to compute B−1Ax .
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Preconditioning by Trees

If A is the Laplacian matrix of a graph G , then it is possible to
precondition A by the Laplacian matrix of a subgraph H. For any
subgraph H of G

LH � LG

Suppose we can find subgraph H that are easy to invert and the
largest eigenvalue of L−1H LG is not too big, then we can use LH as
preconditioner. In particular, if H is a spanning tree of G , then LH
is easily invertible.
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Low-stretch spanning tree

Write LG as sum of edge Laplacians:

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v (χu − χv )(χu − χv )T

Let’s consider the trace of L−1H LG , we have

Tr(L−1T LG ) =
∑

(u,v)∈E

wu,vTr(L
−1
T (χu − χv )(χu − χv )T )

=
∑

(u,v)∈E

wu,v (χu − χv )TL−1T (χu − χv )

Note that, (χu − χv )TL−1T (χu − χv ) is the effective resistance
between u and v in T .
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Low-stretch spanning tree

Since T is a spanning tree, the effective resistance between u and
v is equal to the distance in T . Let w1, . . . ,wk be the weights of
edges on the path between u and v , then

(χu − χv )TL−1T (χu − χv ) =
k∑

i=1

1

wi

The term

wu,v

k∑
i=1

1

wi

is defined to be the stretch of edge (u, v) with respect to the tree
T .
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Preconditioning by Trees

There are efficient algorithms that can find low-stretch
spanning tree. In particular, we can find spanning tree with
sum of stretchs at most O(m log n log log n) in time
O(m log n log log n).

Therefore, the Preconditioned Conjugate Gradient will require
at most O(m1/2 log n) iterations, each iteration requires one
multiplication by LG and one linear solve in LT .

In fact, it is possible to get algorithms that solve linear systems
in Laplacians in time O(m log n log log n log ε) by combining
low-stretch spanning trees and high-quality graph sparsifiers.
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