Iterative Solvers for Linear Systems and Preconditioning

Yihan Gao

April 1, 2015

2

Yihan Gao

Table of Contents

- 1 Richardson Iteration
- 2 Chebyshev Method
- 3 Conjugate Gradient
- 4 Preconditioning
- 5 Preconditioned Solvers for Laplacians

Yihan Gao

Iterative Methods for Linear System Solving

- Given linear system Ax = b, we could solve them via direct methods such as Gaussian elminiation. But such algorithms can be very slow, especially when A is sparse.
- Iterative algorithms solve linear equations while only performing multiplications by **A** and a few other vector operations. They do not find exact solutions, but they get closer to the solution with each iteration.
- Throughout this presentation we will assume that A is positive definite or positive semidefinite.

Yihan Gao

First-Order Richardson Iteration

Richardson's iteration is an iterative process that has the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ as a fixed point. Note that if $\mathbf{A}\mathbf{x} = \mathbf{b}$, then for any α ,

$$\alpha \mathbf{A} \mathbf{x} = \alpha \mathbf{b}$$
$$\mathbf{x} + (\alpha \mathbf{A} - I)\mathbf{x} = \alpha \mathbf{b}$$
$$\mathbf{x} = (I - \alpha \mathbf{A})\mathbf{x} + \alpha \mathbf{b}$$

The last step can be viewed as an iterative update. It converges if $I - \alpha \mathbf{A}$ has norm less than 1, the convergence rate depends on how much the norm is less than 1.

ent Preconditioning

(日) (同) (三) (三)

э

Convergence Rate of Richardson Iteration

Let $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be the eigenvalues of A, then the eigenvalues of $I - \alpha \mathbf{A}$ are $1 - \alpha \lambda_i$, and the norm of $I - \alpha \mathbf{A}$ is:

$$\max(|1 - \alpha \lambda_1|, |1 - \alpha \lambda_n|)$$

It is minimized by

$$\alpha = \frac{2}{\lambda_n + \lambda_1}$$

And the norm is

$$1 - \frac{2\lambda_1}{\lambda_n + \lambda_1}$$

Yihan Gao

ent Preconditioning

Convergence Rate of Richardson Iteration

The update formula of Richardson Iteration

$$x^{(t+1)} = (I - \alpha \mathbf{A})x^{(t)} + \alpha \mathbf{b}$$

Rearranging the terms, we see that:

$$\mathbf{x} - \mathbf{x}^{(t)} = (I - \alpha \mathbf{A})(\mathbf{x} - \mathbf{x}^{(t-1)})$$

Thus we can get ϵ -approximation of **x** by running for about

$$rac{\lambda_n+\lambda_1}{2\lambda_1}\ln(1/\epsilon)=(rac{\lambda_n}{2\lambda_1}+rac{1}{2})\ln(1/\epsilon)$$

iterations.

Yihan Gao

onjugate Gradi

ient Preconditioni

A (1) > A (1) > A

Polynomial approximation of the inverse

Another way of viewing Richardson's iteration is that it provides us with a polynomial in **A** that approximates \mathbf{A}^{-1} . In particular, it can be expressed as:

$$\mathbf{x}^{(t)}=
ho^t(\mathbf{A})\mathbf{b}$$

where p^t is a polynomial of degree t. Our goal is

$$||p^t(\mathbf{A})\mathbf{b} - \mathbf{x}|| = ||p^t(\mathbf{A})\mathbf{A}\mathbf{x} - \mathbf{x}|| \le \epsilon ||\mathbf{x}||$$

In general a polynomial p^t computes a solution to precision ϵ if

$$||\mathbf{A}p^t(\mathbf{A}) - I|| \le \epsilon$$

Better Polynomials

Thus, if we can find better polynomials p^t that approximates \mathbf{A}^{-1} , we can find better iterative methods. Note that the eigenvalues of $\mathbf{A}p^t(\mathbf{A}) - I$ are $\lambda_i p^t(\lambda_i) - 1$, therefore it suffices to find a polynomial p^t such that

$$|\lambda_i p^t(\lambda_i) - 1| \leq \epsilon$$

Define $q(x) = 1 - xp^t(x)$, then it suffices to find a polynomial q of degree t + 1 such that

$$q(0)=1$$

 $|q(x)|\leq\epsilon, ext{ for } x\in[\lambda_1,\lambda_n]$

3

Chebyshev Polynomials

We can construct such q using the Chebyshev polynomials. The *t*th Chebyshev polynomial, written as T_t , can be defined as the polynomial such that

$$\cos(tx) = T_t(\cos(x))$$

Following the definition, it is easy to see that $-1 \le T_t(x) \le 1$ for all $x \in [-1, 1]$. For values outside [-1, 1], we have the following property:

$${\mathcal T}_t(1+\gamma) \geq (1+\sqrt{2\gamma})^t/2, \,\, {
m for}\,\, \gamma>0$$

It means that $T_t(x)$ grows very quickly on $x \in [1, \infty]$.

Chebyshev Polynomials

We perform a linear map on T_t so that [-1, 1] is mapped to $[\lambda_{\min}, \lambda_{\max}]$. More specifically, we define

$$I(x) = \frac{\lambda_{max} + \lambda_{min} - 2x}{\lambda_{max} - \lambda_{min}}$$

so that

$$I(x) \in [-1,1], ext{ for } x \in [\lambda_{\textit{min}}, \lambda_{\textit{max}}]$$

Let

$$q(x) = \frac{T_t(I(x))}{T_t(I(0))}$$

<ロ> <同> <同> < 回> < 回>

э

It is obvious that q(0) = 1.

Chebyshev Polynomials

$$q(x) = \frac{T_t(I(x))}{T_t(I(0))}$$

Note that for $x \in [\lambda_{min}, \lambda_{max}]$, $l(x) \in [-1, 1]$, $T_t(l(x)) \in [-1, 1]$. As for $T_t(l(0))$, notice that

$$l(0) = 1 + rac{2\lambda_{min}}{\lambda_{max} - \lambda_{min}}$$

Thus, using the property of Chebyshev Polynomials, we get

$$q(x) \leq 2(1 + 2\sqrt{\lambda_{\textit{min}}/\lambda_{\textit{max}}})^{-t}, ext{ for } x \in [\lambda_{\textit{min}}, \lambda_{\textit{max}}]$$

(日) (同) (三) (三)

э

Yihan Gao

Conjugate Gradient

Sometimes, it is useful to measure error in the matrix norm, which is defined by:

$$||x||_{\mathcal{A}} = \sqrt{x^{T} \mathcal{A} x}$$

Conjugate Gradient Algorithm is one such algorithm that minimizes the matrix norm of residual. It begins with vector \mathbf{b} , and after t iterations it produces a vector that is in the span of

$\{b, Ab, A^2b, \dots, A^tb\}$

The Conjugate Gradient will find the vector \mathbf{x}_t in this subspace that minimizes the error in the *A*-norm. In other words, Conjugate Gradient method is the optimal iterative method in terms of *A*-norm.

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Error in A-norm

$$||x_t - x||_A^2 = x_t^T A x_t - 2x^T A x_t + x^T A x = x_t^T A x_t - 2b^T x_t + x^T A x_t$$

Let p_0, \ldots, p_t be a basis of this subspace, and let

$$x_t = \sum_{i=0}^t c_i p_i$$

Then we have,

$$x_{t}^{T}Ax_{t} - 2b^{T}x_{t} = (\sum_{i=0}^{t} c_{i}p_{i})^{T}A(\sum_{i=0}^{t} c_{i}p_{i}) - 2b^{T}(\sum_{i=0}^{t} c_{i}p_{i})$$
$$= \sum_{i=0}^{t} c_{i}^{2}p_{i}^{T}Ap_{i} - 2\sum_{i=0}^{t} c_{i}b^{T}p_{i} + \sum_{i\neq j} c_{i}c_{j}p_{i}^{T}Ap_{j}$$

Yihan Gao

Conjugate Gradient

ient Preconditioning

(日) (同) (三) (三)

э

Conjugate Gradient Algorithm

$$||x_t - x||_A^2 = \sum_{i=0}^t c_i^2 p_i^T A p_i - 2 \sum_{i=0}^t c_i b^T p_i + \sum_{i \neq j} c_i c_j p_i^T A p_j + \text{const}$$

To simplify the optimization, the Conjugate Gradient will choose p_i such that $p_i^T A p_j = 0$ for all $i \neq j$. In that case, the objective function becomes

$$\sum_{i=0}^t (c_i^2 p_i^T A p_i - 2c_i b^T p_i)$$

This is minimized by setting derivatives to zero, which gives

$$c_i = (b^T p_i)/(p_i^T A p_i)$$

Yihan Gao

Computing the basis vectors

pi can be computed methods similar to Gram-Schmidt Process

$$p_{t+1} = Ap_t - \sum_{i=0}^t p_i \frac{(Ap_t)^T Ap_i}{p_i^T Ap_i}$$

Actually the last summation only has two non-zero terms since Ap_i is in the span of p_0, \ldots, p_{i+1} and is orthogonal to Ap_t when i < t - 1. Therefore each iteration of Conjugate Gradient takes O(1) matrix multiplication and O(1) vector operations.

Preconditioning

Preconditioning is an approach to solving linear equations in a matrix A by finding a matrix B that approximates A, but easier to solve. Remember that B is an ϵ -approximation of A if

$$(1-\epsilon)A \preceq B \preceq (1+\epsilon)A$$

We show that if **A** is an ϵ -approximation of **B**, then $\mathbf{B}^{-1}\mathbf{b}$ is not far from x in A-norm.

$$||B^{-1}b - x||_{A} = ||A^{1/2}B^{-1}b - A^{1/2}x||$$

= $||A^{1/2}B^{-1}(Ax) - A^{1/2}x||$
 $\leq ||A^{1/2}B^{-1}A^{1/2} - I||||A^{1/2}x||$
= $||A^{1/2}B^{-1}A^{1/2} - I||||x||_{A}$

< 回 > < 三 > < 三 >

э

Yihan Gao

Preconditioning

$$\begin{split} ||B^{-1}b - x||_{A} &\leq ||A^{1/2}B^{-1}A^{1/2} - I||||x||_{A} \\ \text{Note that } A^{1/2}B^{-1}A^{1/2} \text{ is similar to } B^{-1/2}AB^{-1/2}, \text{ therefore} \\ \lambda_{max}(A^{1/2}B^{-1}A^{1/2}) &= \lambda_{max}(B^{-1/2}AB^{-1/2}) \\ &= \max_{x} \frac{x^{T}B^{-1/2}AB^{-1/2}x}{x^{T}x} \\ &= \max_{y=B^{-1/2}x} \frac{y^{T}Ay}{y^{T}By} \\ &\leq 1 + \epsilon \end{split}$$

2

Similarly,
$$\lambda_{min}(A^{1/2}B^{-1}A^{1/2}) \ge 1 - \epsilon$$
, therefore,
$$||A^{1/2}B^{-1}A^{1/2} - I|| \le \epsilon$$

Yihan Gao

Preconditioned Iterative Methods

Preconditioning can be applied together with iterative methods, if B can be easily inverted, then we can trasnform the equations by:

$$B^{-1}Ax = B^{-1}b$$

Then we can use iterative methods on matrix $B^{-1}A$, but whenever we need to compute $B^{-1}Ax$ for some vector x, we first compute Ax, then use a solver of B to compute $B^{-1}Ax$.

Preconditioning by Trees

If A is the Laplacian matrix of a graph G, then it is possible to precondition A by the Laplacian matrix of a subgraph H. For any subgraph H of G

$$L_H \preceq L_G$$

Suppose we can find subgraph H that are easy to invert and the largest eigenvalue of $L_H^{-1}L_G$ is not too big, then we can use L_H as preconditioner. In particular, if H is a spanning tree of G, then L_H is easily invertible.

Yihan Gao

Low-stretch spanning tree

Write L_G as sum of edge Laplacians:

$$L_G = \sum_{(u,v)\in E} w_{u,v} L_{u,v} = \sum_{(u,v)\in E} w_{u,v} (\chi_u - \chi_v) (\chi_u - \chi_v)^T$$

Let's consider the trace of $L_H^{-1}L_G$, we have

$$\mathbf{Tr}(L_T^{-1}L_G) = \sum_{(u,v)\in E} w_{u,v} \mathbf{Tr}(L_T^{-1}(\chi_u - \chi_v)(\chi_u - \chi_v)^T)$$
$$= \sum_{(u,v)\in E} w_{u,v}(\chi_u - \chi_v)^T L_T^{-1}(\chi_u - \chi_v)$$

Note that, $(\chi_u - \chi_v)^T L_T^{-1} (\chi_u - \chi_v)$ is the effective resistance between u and v in T.

э

Yihan Gao

Low-stretch spanning tree

Since T is a spanning tree, the effective resistance between u and v is equal to the distance in T. Let w_1, \ldots, w_k be the weights of edges on the path between u and v, then

$$(\chi_u - \chi_v)^T L_T^{-1}(\chi_u - \chi_v) = \sum_{i=1}^k \frac{1}{w_i}$$

The term

$$w_{u,v}\sum_{i=1}^k \frac{1}{w_i}$$

is defined to be the *stretch* of edge (u, v) with respect to the tree T.

A (1) > A (1) > A

Yihan Gao

Preconditioning by Trees

- There are efficient algorithms that can find low-stretch spanning tree. In particular, we can find spanning tree with sum of stretchs at most O(m log n log log n) in time O(m log n log log n).
- Therefore, the Preconditioned Conjugate Gradient will require at most O(m^{1/2} log n) iterations, each iteration requires one multiplication by L_G and one linear solve in L_T.
- In fact, it is possible to get algorithms that solve linear systems in Laplacians in time O(m log n log log n log e) by combining low-stretch spanning trees and high-quality graph sparsifiers.

References

- Lecture Notes from Daniel A Spielman: www.cs.yale.com/homes/spielman/561/lec17-12.pdf www.cs.yale.com/homes/spielman/561/lec18-12.pdf www.cs.yale.com/homes/spielman/561/lec19-12.pdf
- I. Koutis, G.L. Miller, and R. Peng. A nearly-mlogn time solver for sdd linear systems. In Foundations of Computer Science (FOCS), 2011 52nd Annual IEEE Symposium on, pages 590–598, 2011.