
Connectivity in Mobile Robot Networks
Optimimization-based Connectivity Control
Continuous Feedback Connectivity Control

Hybrid Feedback Connectivity Control
Application of Connectivity Control

Graph Theoretic Connectivity Control of Mobile Robot Networks

Yang Li

Applied Dynamics Lab
Department of Mechanical Science and Engineering

April 20, 2015

Yang Li Graph Theoretic Connectivity Control of Mobile Robot Networks



Connectivity in Mobile Robot Networks
Optimimization-based Connectivity Control
Continuous Feedback Connectivity Control

Hybrid Feedback Connectivity Control
Application of Connectivity Control

Background

Figure 1: Interaction of robots

Figure 2: Communication
between robots

Research I am doing

Task space control of robots

Dynamics of the interaction of the
robot networks

Robustness of robot control

One issue comes out: Since the efficiency of
robot network depends on the information
exchange, i.e. communication, the robots
must stay close to each other in order to be
able to have a reliable communication.

Today’s presentation

Connectivity control of robot networks

Applications of connectivity control
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Connectivity in Mobile Robot Networks

Figure 3: Network of robots

Consider n points robots in Rd .

Single integrator model,

ẋi (t) = ui (t), (1)

where xi (t) ∈ Rd is the position
of robot i , and ui (t) ∈ Rd is the
control input to robot i at time t.

Double integrator models,

ẋi (t) = vi (t),

v̇i (t) = ui (t), (2)

where vi (t) ∈ Rd is the velocity
of robot i .
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Figure 4: Different choices for the function f .

Denote (i , j) a communication link between
robots i and j . Define the weight function
of the link (i , j),

w : Rd × Rd → R+

such that

wij (t) = w(xi (t), xj (t)) = f (‖xij (t)‖2),
(3)

for some f : R+ → R+, where
xij (t) = xi (t)− xj (t). Here f is chosen to
be a function of the inter robot distance
‖xij (t)‖2, such that

1− ε < f (‖xij (t)‖2) ≤ 1, if ‖xij (t)‖2 < ρ1

and

0 < f (‖xij (t)‖2) ≤ ε, ‖xij (t)‖2 > ρ2
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The weighted state-dependent graph

G = (V,W),

where V = {1, . . . , n} denotes the set of nodes indexed by the set of robots, and
W : V× V× R+ → R+ denotes the set of edge weights, such that

wij (t) = W(i , j , t)

for i , j ∈ V and with wij (t) defined as f (‖xij (t)‖2).

Assumption

G is symmetric weighted, i.e. wij (t) = wji (t);

G has no loop, i.e. wii (t) = 0, ∀i ∈ V.
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Definition (Graph connectivity)

An undirected graph G is connected if for every pair of nodes there exists a path starting at one
node and ending at the other.

Definition (Adjacency Matrix)

Define the adjacency matrix A(t) ∈ Rn×n
+ of the weighted graph G with entries

[A(t)]ij = wij (t). (4)

If the network has symmetric weights, A(t) is symmetric.

If the weights satisfy wij (t) ∈ 0, 1, the powers of A(t) are closely related to network
connectivity.

Theorem 1 (Graph Connectivity)

The entry [Ak (t)]ij of the matrix Ak (t) is the number of paths of length k from node i to node j
in G. Therefore, G is connected if and only if there exists an integer K such that all the entries of
the matrix CK (t) =

∑K
k=0Ak (t) are non-zero.
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Another way to study the graph connectivity is using Laplacian matrix of the network G.

Definition (Laplacian matrix)

L(t) , D(t)−A(t) (5)

where D(t) =diag(
∑n

j=1 wij (t)) denotes the diagonal matrix of degrees of the network.

The network connectivity is closely related to the spectral properties of L(t), shown by the
following theorem.

Theorem 2 (Graph Connectivity)

Let

0 = λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤ λn(L(t))

be the ordered eigenvalues of the Laplacian matrix L(t). Then λ2(L(t)) > 0 if and only if G is
connected.

λ2(L(t)) is also a measure of the robustness of the network to link failures.
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Definition (k-connectivity)

Let η(G) be the minimum number of edges that if removed from G increase its number of
connected components. Then, for any k ≤ η(G) the undirected graph G is called k-connected.

The edge connectivity η(G) and algebraic connectivity λ2(L(t)) are related by the inequality

λ2(L(t)) ≤ η(G)

If λ2(L(t)) > k − 1, then the network G is k-connected.
When k = 1, the k-connectivity reduces to the usual definition of connectivity.

Network problem foundation

Given an initially connected state-dependent network G, design distributed controllers ui (t)ni=1 for
the robots, so that the closed loop system guarantees that G is k-connected for all time.
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Optimimization-based Connectivity Control

Since λ2(L(t)) is a concave function of L(t), i.e.

λ2(L(t))zTz ≤ zTL(t)z

the 2nd largest eigenvalue of L(t)

λ2(L(t)) = infz∈1⊥
zTL(t)z

zTz
, (6)

maximization of λ2(L(t)) gives rise to convex optimization approaches to the connectivity control
problem, i.e.

max
x∈Rdn

λ2(L(x)) (7)

where x = [x1 x2 . . . xn]T ∈ Rdn denotes vectors of all robot positions.
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Centralized Connectivity Maximization

Lemma 1

Let P = [p1 . . . pn−1] ∈ Rn×(n−1), be such that pTi 1 = 0 for all i = 1, . . . , n − 1 and pTi pi = 0

for all i 6= j . Then, λ2(L) > 0 if and only if PTLP � 0.

Proof.

Since L � 0 and L1 = 0, the smallest eigenvalue λ1(L) = 0 and rank(L) ≤ n − 1. This implies
that λ2(L) > 0 if and only if wTLw > 0 for all w ∈ 1⊥.
Let z ∈ Rn−1 and consider zTPTLPz = (Pz)TLPz. Let w = Pz. Since P is full rank, w = Pz
defines an injective mapping between Rn−1 and Rn. Therefore, wTLw > 0 for all w ∈ Rn if and
only if zTPTLPz > 0 for all z ∈ Rn−1.

This results in an equivalent convex formulation for the problem by

max
L(t)∈Sn

γ (8)

s.t. PTLP � γIn−1, (9)

This can be solved for the optimal Laplacian matrix L∗ from semidefinite programming.
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Centralized Connectivity Maximization (Continued)

Introduce state-dependent G via the set of edge weights, along with a set of minimum distance
constraints ‖xij‖2 ≥ ρ1.

The solution for a trajectory x(t) ∈ Rdn is achieved by an iteration algorithm that maximizes the
algebraic connectivity at every step. The distances ‖xij‖2

2 are differentiated and then discretized
by Euler’s first order method:

2([xs+1]i − [xs+1]j )
T([xs ]i − [xs ]j ) = [χs+1]ij − [χs ]ij

where χ ∈ Rn×n
+ is a Euclidean distance matrix, s.t. [χ]ij = ‖xij‖2

2.
Differentiate and discretize the weights wij , gives

[ws+1]ij = [ws ]ij +
∂f ([χ]ij )

∂[χ]ij
|s([χs+1]ij − [χs ]ij )

Substituting these, and results the optimization problem:

max
xs+1∈Rdn

γ

s.t. PTL(xs+1)P � γIn−1, [χs+1]ij ≥ ρ2
1

2([xs+1]i − [xs+1]j )
T([xs ]i − [xs ]j ) = [χs+1]ij − [χs ]ij (10)
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Distributed Connectivity Maximization

Observe that

λ2(L̃)zT2 z2 ≤ zT2 L̃z2 (11)

where L̃ 6= L, and z2 ∈ 1⊥ is the unit eigenvector of L corresponding to λ2(L).
Since

zT2 L̃z2 = zT2 Lz2 + zT2 (L̃ − L)z2

= λ2(L) + 〈z2z
T
2 , (L̃ − L)〉

then,

λ2(L̃)zT2 z2 ≤ λ2(L) + 〈z2z
T
2 , (L̃ − L)〉

Thus, G = z2zT2 is a supergradient for λ2(L), and the update rule for Laplacian L is

L∗s+1 = L∗s + αsGs (12)

where αs is the step size.
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Distributed Connectivity Maximization (Continued)

Robot i is captured by the following optimization problem:

min
xi∈Rd

‖[L(x)]i − [L∗s ]i‖2
2 (13)

where L(x) is the i-th row of the Laplacian as a function of robots’ position, and [L∗s ]i is the i-th
row of the optimal Laplacian computed by robot i at the s-th step of the supergradient.
The controller for robot i

ui (t) = −
∑
j∈Ni

∇xiVij (t), (14)

where

Vij (t) =

{
(‖xij‖2

2 − [L∗s ]−1
ij )2, if ‖xij‖2 ≤ ρ2

(ρ2 − [L∗s ]−1
ij )2, if ‖xij‖2 > ρ2

(15)

Here, [L∗s ]−1
ij is the desired distance between robots i and j .

Under certain boundedness conditions on the tracking error associated with the optimal Laplacian
L∗s , the supergradient algorithm converges.
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Continuous feedback connectivity control

Recall Proposition 1: Let P = [p1 . . . pn−1] ∈ Rn×(n−1), be such that pTi 1 = 0 for all

i = 1, . . . , n − 1 and pTi pi = 0 for all i 6= j . Then, λ2(L(t)) > 0 if and only if PTLP � 0.

Theorem 1

Define the potential function φ : Rdn → R+ as

φ(x) = log det(PTL(x)P)−1, (16)

The closed loop system with u = −∇xφ(x) guarantees that G is connected for all time.

Proof Scheme

The proof of this result relies on positive invariance of the level sets
φ−1([0, c]) = {x ∈ Rdn|φ(x) ≤ c} of φ, which is due to the fact that φ̇(x) = −‖∇xφ(x)‖2

2 ≤ 0.

The potential φ is a convex function of the Laplacian, but the dependence of the Laplacian on
the state via the edge weights makes φ a non-convex function of the x ∈ Rdn. Thus, the
proposed control scheme ensures only local maximization of λ2(L(x)).
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Proposition 1

The controller u = −∇xφ(x) is given by

u =
1

detM(x)


tr[M−1(x) ∂

∂x1
M(x)]

...

tr[M−1(x) ∂
∂xn
M(x)]

 (17)

where M(x) = PTL(x)P.

The proof process is skipped due to straightforward but heavy math.
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Hybrid feedback connectivity control

The approach discussed is centralized since every robot requires knowledge of the whole network
structure captured by L(x) to compute its controller. To regulate the structure of the
proximity-based network G in a distributed fashion, introduce a binary control signal
σ ∈ {0, 1}n×n, such that

[σ]ij =

{
1, to activate the link (i , j) ∈ ~E
0, to deactivate the link (i , j) ∈ ~E

This gives rise to the weighted graph Gσ = (V,Wσ) where Wσ : V× V× R+ → R+ is the set of
edge weights such that

wσij (t) = Wσ(i , j , t)

with wσij = wij [σ]ij .
The control signal σ is a discrete switch on the links of the network G, but only affects existing
links for which wij > 0.
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Figure 5: The artificial function ψij (‖xij‖2)
is symmetric w.r.t xi and xj , and when
bounded, it guarantees edge preservation for
‖xij‖2 → ρ2.

The edge and neighbor sets associated with the
graph Gσ are defined by ~Eσ = {(i , j)|wσij > 0}
and Nσi = {j ∈ V|(i , j) ∈ ~Eσ}, respectively. The
hybrid model for the mobile network G
consisting of single integrator robots and
controllers given by ([5] [6])

uσi = −
∑
j∈Nσ

i

∇xiψij . (18)

where ψij : R+ → R+ are artificial potential
functions defined on the links of the network. In
connectivity control, take the form:

ψij =
1

ρ2
2 − ‖xij‖2

2

, (19)

to ensure link preservation between adjacent
robots.
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Maintaining Communication Links

Figure 6: Hysteresis protocol for adding
internet energy functions to the total energy
function only when agents get within a
distance ρ1 of each other, rather than when
they first encounter each other at a distance
ρ2.

Introduce a hysteresis into the system through
the signal σ given by the state machine in Fig.4.
The signal [σ]ij is such that the total energy is
affected by an edge (i , j) that was previously not
contributing to the total energy only when
‖xij‖2 < ρ1, where 0 < ρ1 < ρ2 is the predefined
switching threshold that regulates how fast
inter-robot information is included in the control
law.
Once the edge is allowed to contribute to the
total energy, it keeps doing so for all subsequent
times.

[σ]ij (t
+) =

{
0, if [σ]ij (t

−) = 0 and ‖xij‖2 ≥ ρ1

1, otherwise

(20)

where [σ]ij (t
+) and [σ]ij (t

−) denotes the value
of [σ]ij before and after the state transition in
Fig.4.
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Proposition 4

Consider the closed loop system (1)-(18). Then, all links in Gσ are maintained.

Proof.

Let

ψσ =
1

2

n∑
i=1

ψσi ,

where ψσi =
∑

j∈Nσ
i
ψij , denote the total energy

of the system.

1

2

n∑
i=1

ψ̇σi =
1

2

n∑
i=1

∑
j∈Nσ

i

ẋTij ∇xijψij

=
1

2

n∑
i=1

∑
j∈Nσ

i

(ẋTi ∇xijψij − ẋTj ∇xijψij )

(21)

=
1

2

n∑
i=1

∑
j∈Nσ

i

(ẋTi ∇xiψij + ẋTj ∇xjψij )

=
n∑

i=1

∑
j∈Nσ

i

ẋTi ∇xiψij =
n∑

i=1

∑
j∈Nσ

i

ẋTi ∇xiψ
σ
i

by the symmetry of ψij . Therefore,

ψ̇σ = −
n∑

i=1

‖∇xiψ
σ
i ‖

2
2 ≤ 0.

This implies that the level sets ψ−1
σ ([0, c]) of ψσ

are positively invariant, and hence, no line are
lost.
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Connectivity Preserving Rendezvous

Figure 7: Execution of the rendezvous
control strategy until the graph is a
complete graph

Robots are required to meet at a common,
not a priori specified location without
relying on global positioning, i.e. robot i , at
position xi , has access to xj − xi if i and j
are neighbors. One control strategy is given
in [6],

ẋi =
∑
j∈Nσ

i

2ρ2
2

(ρ2
2 − ‖xij‖2

2)2
(xj − xi ), (22)

As long as G is connected for all times.
This ensures that no edges are lost, and all
agents asymptotically approach the same
location.

Rendezvous control law serves a
cohesion purpose.

Some collision-avoidance controller
may need to be added.
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Connectivity Preserving Formation Control

Figure 8: Illustration of how the complete
graph is changed to the desired formation
using only local information.

Drive the robots to a desired target
configuration.
Assume the target configuration can
be encoded through ζ1, . . . , ζn ∈ Rd ,
where ζi is the location that agent i
should go. The formation control
objective is to achieve

xi = ζi + τ, ∀i = 1, . . . , n (23)

for some constant τ ∈ Rd , where τ is
the constant offset from the target
configuration.
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Connectivity Preserving Flocking

Figure 9: Connectivity preserving flocking
for a sparse initial configuration where
connectivity can not be trivially maintained.
The network remains connected while all
robot velocities are asymptotically aligned.
Dotted lines indicate communication links
that are candidates for deletion.

Reynolds model of flocking:

Alignment: Steer towards the
average heading of local flock
mates.

Seperation: Steer to avoid
crowding of local flock mates.

Cohesion: Steer towards the
average position of local flock
mates.

Flocking requires information from
nearest neighbor flock mates only.
Superposition of the three rules results
in all robots moving as a flock while
avoiding collision.
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Connectivity Preserving Flocking (continued)

Double integrator dynamics of the robots team

ẋi = vi (24)

v̇i = −
∑
j∈Ni

(vi − vj )−
∑
j∈Ni

ψ̄ij (25)

The connectivity control framework and the artificial potentials

ψ̄ij =


1

‖xij‖2
2+P1(‖xij‖2)

, ‖xij‖2 ∈ (0, ρ0]

0, ‖xij‖2 ∈ (ρ0, ρ1)
1

ρ2
2−‖xij‖

2
2+P2(‖xij‖2)

, ‖xij‖2 ∈ [ρ1, ρ2)

(26)

with 0 < ρ0 < ρ1 < ρ2 and Pk (‖xij‖2) , ak‖xij‖2
2 + bk‖xij‖2 + ck for k = 1, 2 such that ψij ∈ C2

in (0, ρ2).
This control architecture guarantee the flocking behavior of the team, while preserving
connectivity of the network.
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Conclusion

Basic knowledge of network connectivity associated with spectral graph theory

Control theoretic methods for connectivity preservation (optimization-based connectivity
control, continuous feedback connectivity control, and hybrid feedback connectivity control)

Applications of connectivity control (connectivity preserving rendezvous, connectivity
preserving formation control, and connectivity preserving flocking)
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