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Abstract— In this paper we provide a theoretical framework
for controlling graph connectivity in mobile robot networks.
We discuss proximity-based communication models composed of
disk-based or uniformly fading signal strength communication
links. A graph theoretic definition of connectivity is provided,
as well as an equivalent definition based on algebraic graph
theory, which employs the adjacency and Laplacian matrices of
the graph and their spectral properties. Based on these results,
we discuss centralized and distributed algorithms to maintain,
increase, and control connectivity in mobile robot networks.
The various approaches discussed in this paper range from
convex optimization and subgradient descent algorithms, for the
maximization of the algebraic connectivity of the network, to
potential fields and hybrid systems that maintain communication
links or control the network topology in a least restrictive manner.
Common to these approaches is the use of mobility to control the
topology of the underlying communication network. We discuss
applications of connectivity control to multi-robot rendezvous,
flocking and formation control, where so far, network connectivity
has been considered an assumption.

Index Terms— Graph connectivity, algebraic graph theory,
convex and subgradient optimization, hybrid systems.

I. INTRODUCTION

MOBILE robot networks have recently emerged as an
inexpensive and robust way of addressing a wide

variety of tasks ranging from exploration, surveillance and
reconnaissance, to cooperative construction and manipulation.
The success of these stories relies on efficient information
exchange and coordination between the members of the team.
In fact, recent work on distributed consensus and state agree-
ment has strongly depended on multi-hop communication for
convergence and performance guarantees [1]–[14].

Multi-hop communication in multi-robot systems has typ-
ically relied on constructs from graph theory, with weighted
proximity and disc-based graphs gaining the most popularity.
Besides their simplicity, these models owe their popularity
to their resemblance to radio signal strength models, where
the signals attenuate with the distance [15]–[17]. In this con-
text, multi-hop communication becomes equivalent to network

The work of Michael M. Zavlanos and George J. Pappas was supported
by the ONR HUNT MURI and ARO SWARMS MURI projects. The work
of Magnus B. Egerstedt was supported by the ONR HUNT MURI project.

Michael M. Zavlanos is with the Dept. of Mechanical Engi-
neering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
michael.zavlanos@stevens.edu. Magnus B. Egerstedt is with the
Dept. of Electrical and Computer Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332, USA magnus@ece.gatech.edu. George J.
Pappas is with the Dept. of Electrical and Systems Engineering, University of
Pennsylvania, Philadelphia, PA 19104, USA pappasg@seas.upenn.edu.

Fig. 1. Networks have long served as models of local interactions in the field
mobile robotics. Robots are typically associated with the nodes of a graph and
communication links with the edges.

connectivity, defined as the property of a graph to transmit
information between any pair of its nodes.

Network connectivity has been widely studied in the area
of wireless and ad-hoc networks. Of great importance in this
field is the power management of the nodes for optimal routing
and lifetime of the network, while ensuring connectivity [18]–
[23]. This research has given rise to connectivity or topology
control algorithms that regulate the transmission power of the
nodes and, therefore, their communication range. Approaches
range from cone-based [24]–[26] to distributed algorithms
that do not involve any position information of the nodes
[27], [28]. Related is also work on asymptotic bounds on
the number of neighbors required to ensure connectivity in
randomly deployed networks [29], as well as on the critical
interference above which connectivity is lost [30]. However,
this type of work focuses more on the power consumption and
routing problem than the actuation and control.

Although networks have long served as models of local
interactions in the field of mobile robotics (Fig. 1), until
recently their structural properties have been assumed and
decoupled from the control objectives, as in the case of
connectivity in distributed consensus [1]–[14]. A first attempt
to control the network structure was with the design of net-
works with maximal connectivity, where eigenvector structure-
based approaches for tree networks [31], [32] were followed
by optimization-based approaches applied to more general
networks [33], [34]. Recently, controllability frameworks for
state-dependent graphs were also proposed [35]. Nevertheless,
the first work to treat connectivity as a control objective was
[36], in the context of multi-robot rendezvous. Since then, a
large amount of research has been targeted in this direction,
and a wide range of applications and solution techniques have
been proposed.

A metric that is typically employed to capture connectivity
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of robotic networks is the second smallest eigenvalue λ2(L)
of the Laplacian matrix L of the graph, also known as the
algebraic connectivity or Fiedler value of the graph. It is well
known that λ2(L) is a concave function of the Laplacian ma-
trix, and when positive definite, it implies network connectivity
[37]–[40]. This has given rise to optimization-based connectiv-
ity controllers, that rely on maximization of the Fiedler value
[41], [42]. Since λ2(L) is a function of the network’s structure
via the Laplacian matrix, connectivity algorithms that relied on
it were initially centralized [41]. Only recently have there been
subgradient algorithms for its distributed optimization [42].
Furthermore, the Fiedler value is a non-differentiable function
of the Laplacian matrix, which presents obstacles in designing
feedback controllers to maintain it positive definite. Ways
to overcome this problem involve either positive definiteness
constraints on the determinant of the Laplacian matrix that is
a differentiable function of the Laplacian [43], or distributed
consensus on either Laplacian eigenvectors [44], [45] or on the
network structure itself [46] for local estimation of the Fiedler
value of the overall network.

Alternatively, connectivity can be captured by the sum of
powers

∑K
k=0Ak of the adjacency matrix A of the network,

which represents the number of paths up to length K be-
tween every pair of nodes in the graph [40]. By definition
of graph connectivity, if this number is positive definite for
K = n − 1 and all pairs of nodes, then the network is
connected (n denotes the number of nodes). For originally
connected networks, maintaining positive definiteness of all
positive entries of

∑K
k=0Ak for any K ≤ n − 1, maintains

paths of maximum length K between agents and, as shown
in [47], is sufficient to maintain connectivity of the network.
This typically gives rise to optimization-based connectivity
controllers [47], [48], that are often centralized due to the
multihop agent dependencies that are introduced by the powers
of the adjacency matrix. Since smaller powers correspond to
shorter dependencies (paths), distribution is possible as K
decreases. If K = 1, connectivity maintenance reduces to
preserving the links of a connected spanning subgraph of the
network and due to differentiability of the adjacency matrix,
often results in feedback solution techniques. Discrete-time
approaches are discussed in [36], [49], [50], while [51]–[56]
rely on local gradients that may also incorporate switching
in the case of link additions. Switching between arbitrary
spanning topologies has also been studied with the spanning
subgraphs being updated by local auctions [46], distributed
spanning tree algorithms [57], combination of information
dissemination algorithms and graph picking games [58], or in-
termediate rendezvous [59], [60]. This class of approaches are
typically hybrid, combining continuous link maintenance and
discrete topology control. The algebraic connectivity λ2(L)
and number of paths

∑K
k=0Ak metrics can also be combined

to give controllers that maintain connectivity, while enforcing
desired multi-hop neighborhoods for all agents [61].

The results discussed above have been successfully applied
to multiple scenarios that require network connectivity to
achieve a global coordinated objective. Indicative of this work
is recent literature on connectivity preserving rendezvous [36],
[52], [56], [62], [63], flocking [55], [64] and formation control

[56], [59], where so far connectivity had been an assumption.
Further extensions and contributions involve connectivity con-
trol for double integrator agents [49], agents with bounded
inputs [65]–[67] and indoor navigation [61], as well as for
communication based on radio signal strength [68]–[71] and
visibility constraints [36], [62], [72]–[74]. Periodic connectiv-
ity for robot teams that need to occasionally split in order to
achieve individual objectives [75] and sufficient conditions for
connectivity in leader-follower networks [76], also add to the
list. Early experimental results have demonstrated efficiency
of these algorithms also in practice [75], [77], [78].

In this paper, we focus on the works of [41]–[43], [46],
[56], [64], since they are the first to have formally addressed
connectivity control of mobile networks for a wide range of
applications and solution techniques. Our contribution is to
present a cohesive overview of the key results in these papers
in a unified framework. This includes basic notions of network
connectivity and control theoretic methods for connectivity
guarantees and convergence. The results discussed in this
work incorporate a variety of mathematical tools, ranging
from spectral graph theory and semidefinite programming, to
gradient descent algorithms and hybrid systems. A byproduct
of this work is to classify the available literature with respect
to the connectivity metrics and solution techniques and provide
a basis upon which future research can be built.

The rest of this paper is organized as follows. In Section II
we develop graph theoretic models of communication and
discuss network connectivity. In Section III we present central-
ized [41] and distributed [42] optimization-based approaches
to maximizing the algebraic connectivity of a network, while
in Section IV, we discuss gradient-based feedback controllers
that rely on the spectral properties of the network [43]. In
Section V we introduce distributed hybrid solutions to the
problem [46], [56], while in Section VI we discuss application
of connectivity control to connectivity preserving rendezvous
[56], flocking [64], and formation control [56].

II. CONNECTIVITY IN MOBILE ROBOT NETWORKS

Consider n points robots in Rd and let xi(t) ∈ Rd denote
the position of robot i at time t ≥ 0. The robots can be
described by either single integrator models

ẋi(t) = ui(t), (1)

where ui(t) ∈ Rd denotes the control input to robot i at time
t, or double integrator models

ẋi(t) = vi(t), (2a)
v̇i(t) = ui(t), (2b)

where vi(t) ∈ Rd denotes the velocity of robot i at time t.
Assume further that the robots have integrated wireless com-
munication capabilities and denote by (i, j) a communication
link between robots i and j. With every communication link
(i, j) we associate a weight function

w : Rd ×Rd → R+,

such that

wij(t) = w(xi(t), xj(t)) = f(‖xij(t)‖2), (3)
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Fig. 2. Different choices for the function f . In particular, Fig. 2(a): f(y) = 1
if y ≤ ρ2, Fig. 2(b): f(y) = 1

1+e−α(y−ρ) with α = 2
ρ2−ρ1

log
(
1−ε
ε

)
and

ρ = ρ1+ρ2
2

, Fig. 2(c): f(y) = 1
ρ1−ρ2

y − ρ2
ρ1−ρ2

if ρ1 ≤ y < ρ2, and
Fig. 2(d): f(y) = e−α(y−ρ1) if y > ρ1, with α = 1

ρ2−ρ1
log

(
1
ε

)
. The

above plots are for ρ1 = .6, ρ2 = 1.4 and ε = .01.

for some f : R+ → R+, where xij(t) = xi(t) − xj(t).1

We choose the function f to be a decreasing function of the
inter-robot distance ‖xij(t)‖2 such that

1− ε < f(‖xij(t)‖2) ≤ 1, if ‖xij(t)‖2 < ρ1

and
0 ≤ f(‖xij(t)‖2) < ε, if ‖xij(t)‖2 > ρ2,

for 0 < ρ1 < ρ2 and small enough 0 < ε < 1 (Fig. 2).
This definition captures the fact that signal strength between
wireless robots is strong up to a distance ρ1 and then decreases
rapidly until it practically vanishes beyond a distance ρ2.

The system described above gives rise to a weighted state-
dependent graph

G = (V,W),

where V = {1, . . . , n} denotes the set of nodes indexed by
the set of robots and W : V×V×R+ → R+ denotes the set
of edge weights, such that

wij(t) = W(i, j, t)

for i, j ∈ V and with wij(t) as in (3). The set ~E(t) =
{(i, j) | wij(t) > 0} is called the set of directed edges of G,
while the unordered pair {i, j} is an edge of G if wij(t) > 0 or
wji(t) > 0. If wij(t) = 0 implies wji(t) = 0 for all i, j ∈ V,
then the weights are called weakly symmetric and the graph
is called undirected. On the other hand, if wij(t) = wji(t) for
all i, j ∈ V, then the weights are called symmetric. Clearly,
if a graph has symmetric weights, then it is also undirected.
Throughout this paper we assume graphs G with symmetric

1We denote by R+ the set [0,∞) and by R++ the set (0,∞).

weights that additionally have no loops, i.e., wii(t) = 0 for
all i ∈ V. We also define the set of neighbors of node i ∈ V
by Ni(t) = {j ∈ V | (i, j) ∈ ~E(t)}, which in the case of
undirected graphs results in a mutual adjacency relationship
between nodes, i.e., if i ∈ Nj(t) then j ∈ Ni(t). Similarly,
we define a directed path of length k by a sequence of k + 1
distinct nodes i0, i1, . . . , ik ∈ V such that (ip−1, ip) ∈ ~E(t)
for all 1 ≤ p ≤ k. If the graph G is undirected, then so are its
paths. An important topological invariant of graphs is graph
connectivity, which for the case of undirected graphs is defined
as follows:

Definition 2.1 (Graph connectivity): We say that an undi-
rected graph G is connected if for every pair of nodes there
exists a path starting at one node and ending at the other.

Network connectivity is an important property of robotic
networks designed to achieve global coordinated objectives,
since it ensures information sharing via multi-hop communi-
cation paths between members of the team. This property can
be efficiently captured using an equivalent algebraic represen-
tation of graphs by the adjacency and Laplacian matrices.

A. Algebraic Definitions of Connectivity

We define the adjacency matrix A(t) ∈ Rn×n
+ of the

weighted graph G with entries

[A(t)]ij = wij(t). (4)

Clearly, if the network has symmetric weights, then the
adjacency matrix is a symmetric matrix. Furthermore, if the
weights satisfy wij(t) ∈ {0, 1} (Fig. 2(a)), then the powers of
the adjacency matrix of a graph are closely related to network
connectivity. In particular, we have the following result [40]:

Theorem 2.2 (Graph connectivity): The entry
[
Ak(t)

]
ij

of
the matrix Ak(t) is the number of paths of length k from node
i to node j in G. Therefore, the graph G is connected if and
only if there exists an integer K such that all the entries of
the matrix CK(t) =

∑K
k=0Ak(t) are non-zero.

Note that the integer K in Theorem 2.2 is upper bounded
by n− 1, since this is the length of the longest possible path
in a network of n nodes. Note also that for any K ≤ n − 1
the inequality

[CK(t)]ij > 0

enforces paths of maximum length K between nodes i and j
in V. It is shown in [47] that, for initially connected networks,
requiring that [CK(t)]ij > 0, for any K ≤ n − 1, whenever
[CK(0)]ij > 0 is sufficient for network connectivity for all
time t ≥ 0. This result can be easily understood if applied for
K = 1, where it states that maintaining all 1-hop links of an
originally connected network is sufficient for connectivity for
all time. In what follows, when relying on the matrix CK(t)
to ensure connectivity, we only consider the case K = 1. The
general case is discussed in [47], [48].

Alternatively, graph connectivity can be captured using the
Laplacian matrix L(t) ∈ Rn×n of the network G, which is
defined by
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[L(t)]ij =

{
−wij(t), if i 6= j∑
s6=i wis(t), if i = j

. (5)

If D(t) = diag
(∑n

j=1 wij(t)
)

denotes the diagonal matrix
of degrees of the network, also called the Valency matrix of
G, then the Laplacian matrix can be written as

L(t) = D(t)−A(t).

The Laplacian matrix of a network G with symmetric
weights is always a symmetric positive semidefinite matrix
with spectral properties closely related to network connectivity,
as it can be seen from the following theorem [40]:

Theorem 2.3: Let

0 ≤ λ1(L(t)) ≤ λ2(L(t)) ≤ · · · ≤ λn(L(t))

be the ordered eigenvalues of the Laplacian matrix L(t). Then,
λ1(L(t)) = 0 with corresponding eigenvector 1, i.e., the n×1
vector of all entries equal to 1. Moreover, λ2(L(t)) > 0 if and
only if G is connected.

Besides an indicator of connectivity, the second smallest
eigenvalue λ2(L(t)) of the Laplacian matrix of G, also called
the algebraic connectivity or Fiedler value of the network, is
also a measure of the robustness of the network to link failures,
captured by the notion of k-connectivity [40]:

Definition 2.4 (k-connectivity): Let η(G) be the minimum
number of edges that if removed from G increase its number of
connected components. Then, for any k ≤ η(G) the undirected
graph G is called k-connected.

The edge connectivity η(G) and algebraic connectivity
λ2(L(t)) are related by the inequality [40]

λ2(L(t)) ≤ η(G).

Therefore, if λ2(L(t)) > k − 1, then the network G is k-
connected. Note that if k = 1, then k-connectivity reduces
to the usual definition of connectivity (Definition 2.1). The
results discussed above give rise to the following statement of
the connectivity control problem:

Problem 1 (Network connectivity control): Given an ini-
tially connected state-dependent network G, design distributed
controllers {ui(t)}ni=1 for the robots so that the closed loop
system (1) or (2) guarantees that G is k-connected for all time.

In what follows, we discuss optimization [41], [42] and
feedback-based [43], [46], [56] solutions to Problem 1 that
employ both connectivity metrics developed above, i.e., the
adjacency matrix A(t) and its powers as well as the algebraic
connectivity λ2(L(t)). We unify these approaches under a
common control framework and characterize them with respect
to the amount of distribution they possess.

III. OPTIMIZATION-BASED CONNECTIVITY CONTROL

Since λ2(L(t)) is a concave function of L(t) in the space
1⊥ given by the infimum of a set of linear functions in L(t),
i.e.,

λ2(L(t))zT z ≤ zTL(t)z

for all z ∈ 1⊥, which implies

λ2(L(t)) = inf
z∈1⊥

zTL(t)z

zT z
, (6)

maximization of λ2(L(t)) gives rise to convex optimization
approaches to the connectivity control problem. In other
words, a sufficient solution to Problem 1 can be obtained by
solving the optimization problem

max
x∈Rdn

λ2(L(x)), (7)

where x = [x1 x2 . . . xn]T ∈ Rdn denotes the vector of all
robot positions. The two approaches to this problem that we
discuss rely on concavity of the state-independent problem

max
L∈Sn

λ2(L), (8)

to obtain an equivalent convex formulation, and then propose
centralized and distributed iterative algorithms, respectively, to
introduce the nonconvex dependence on the state x ∈ Rdn.

A. Centralized Connectivity Maximization

The key idea behind a centralized solution to problem (8) is
to employ the following result that relates positive definiteness
of the algebraic connectivity to positive definiteness of a
quadratic expression of the Laplacian matrix [41].

Proposition 3.1: Let P = [p1 . . . pn−1] ∈ Rn×n−1, be
such that pTi 1 = 0 for all i = 1, . . . , n− 1 and pTi pj = 0 for
all i 6= j. Then, λ2(L) > 0 if and only if PTLP � 0.

Proof: Since, for any graph we have that L � 0 and
L1 = 0, the smallest eigenvalue λ1(L) = 0 is always zero
and rank(L) ≤ n−1. This implies that λ2(L) > 0 if and only
if wTLw > 0 for all w ∈ 1⊥.

Let z ∈ Rn−1 and consider the quadratic form
zTPTLPz = (Pz)TLPz. Let w = Pz. Since P is full rank,
w = Pz defines an injective mapping between Rn−1 and Rn

and, therefore, wTLw > 0 for all w ∈ Rn if and only if
zTPTLPz > 0 for all z ∈ Rn−1.

Proposition 3.1 results in an equivalent convex formulation
for problem (8) by

maxL∈Sn γ
s.t. PTLP � γIn−1, (9)

which can be solved for the optimal Laplacian matrix L? using
readily available tools from semidefinite programming [79].

To obtain a set of trajectories that drive the robots from
a set of initial configurations to a final configuration with
associated Laplacian matrix L?, the authors of [41] introduce
state-dependence of the network G via the set of edge weights
described in Fig. 2(d). Along with a set of minimum distance
constraints ‖xij‖2 ≥ ρ1, this gives rise to the optimization
problem

maxx∈Rdn γ
s.t. PTL(x)P � γIn−1

‖xij‖22 ≥ ρ21,
(10)

for all i < j, which now assumes a nonconvex form. Solution
of problem (10) for a trajectory x(t) ∈ Rdn is achieved by an
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iterative algorithm that maximizes the algebraic connectivity
at every step. For this, the distances ‖xij‖22 are differentiated
and then discretized by Euler’s first order method to give

2([xs+1]i − [xs+1]j)
T ([xs]i − [xs]j) = [Xs+1]ij − [Xs]ij ,

where X ∈ Rn×n
+ is a Euclidean distance matrix, such that

[X ]ij = ‖xij‖22. Similarly, differentiating and discretizing the
weights wij gives

[ws+1]ij = [ws]ij +
∂f([X ]ij)

∂[X ]ij

∣∣∣∣
s

([Xs+1]ij − [Xs]ij) ,

which results in a discrete Laplacian matrix L(xs). Substitut-
ing in problem (10) gives

max
xs+1∈Rdn

γ

s.t. PTL(xs+1)P � γIn−1, [Xs+1]ij ≥ ρ21
2([xs+1]i − [xs+1]j)

T ([xs]i − [xs]j) =
= [Xs+1]ij − [Xs]ij ,

(11)

for all i < j. Problem (11) is essentially a linear approxima-
tion to problem (10) and, therefore, there is a potential for
inconsistencies between the robot positions and their pairwise
distances. This problem can be resolved if a Euclidean distance
constraint is enforced on the matrix X ∈ Rn×n

+ . Such a
constraint can take the form of a linear matrix inequality,
which is due to the following result:

Theorem 3.2 (Euclidean distance matrix): A matrix X ∈
Rn×n

+ is a Euclidean distance matrix if and only if JXJ � 0
and [X ]ii = 0 for all i = 1, . . . , n, where J = In − 11T /n.

Therefore, including the Euclidean distance matrix con-
straints from Theorem 3.2 to the maximization problem (11)
ensures that there are no inconsistencies between the robot
positions and the inter-robot distances. The iterative greedy
algorithm proposed by the authors in [41] is guaranteed to
converge as the sequence of algebraic connectivities generated
by it is nondecreasing and upper bounded by n− 1.

B. Distributed Connectivity Maximization

A distributed solution to problem (8) can be obtained by
supergradient optimization [42]. In particular, a supergradient
matrix for λ2(L(x)) can be obtained by observing that

λ2(L̃)zT2 z2 ≤ zT2 L̃z2, (12)

where L̃ 6= L and z2 ∈ 1⊥ is the unit eigenvector of L
corresponding to λ2(L). The right hand side of (12) can be
further expanded to give

zT2 L̃z2 = zT2 Lz2 + zT2 (L̃ − L)z2

= λ2(L) + 〈z2zT2 , (L̃ − L)〉,

which substituted in (12) gives

λ2(L̃)zT2 z2 ≤ λ2(L) + 〈z2zT2 , (L̃ − L)〉.

Therefore, the matrix G = z2z
T
2 is a supergradient for

λ2(L). Then, the update rule for the Laplacian matrix L is

L?s+1 = L?s + αsGs. (13)

If the step size αs is the coefficient of a not summable
but square summable series, then the supergradient method
converges to the optimal value. Distributed computation of the
supergradient Gs as well as of the eigenvectors of the Laplacian
matrix L is discussed in [80]. According to this scheme, every
robot i computes its own row of the Laplacian matrix L?s ,
denoted by [L?s]i.

To obtain a set of trajectories that drive the robots from
an initial configuration to a final configuration associated
with the optimal Laplacian matrix L? = lims→∞ L?s , the
authors in [42] propose a set of distributed motion controllers
{ui(t)}ni=1 for the robots that essentially track the sequence of
Laplacians L?s generated by the supergradient algorithm (13).
State-dependence of the network G is introduced via a set
of symmetric weights that are according to Fig. 2(d) and give
rise to a state-dependent Laplacian matrix L(x) defined by (5).
Therefore, associated with every iteration of the supergradient
algorithm (13) is a motion control stage, which for every robot
i is captured by the following optimization problem

min
xi∈Rd

‖[L(x)]i − [L?s]i‖22,

where [L(x)]i denotes the i-th row of the Laplacian matrix as
a function of the robots’ positions, and [L?s]i is the i-th row of
the optimal Laplacian computed by robot i at the s-th step of
the supergradient. The above optimization problem is solved
using potential functions and results in a controller

ui(t) = −
∑
j∈Ni

∇xiVij(t), (14)

for every robot i, where

Vij(t) =

{(
‖xij‖22 − [L?s]−1ij

)2
, if ‖xij‖2 ≤ ρ2(

ρ2 − [L?s]−1ij
)2
, if ‖xij‖2 > ρ2

,

and [L?s]−1ij is the desired distance between robots i and j,
given by the inverse of the (i, j)-th entry of the optimal Lapla-
cian matrix. It is shown in [42] that under certain boundedness
conditions on the tracking error associated with the optimal
Laplacian L?s , the supergradient algorithm converges.

IV. CONTINUOUS FEEDBACK CONNECTIVITY CONTROL

Both approaches discussed in Section III employ discrete
iterative algorithms to control the non-differentiable algebraic
connectivity λ2(L(x)). However, Proposition 3.1 and the fact
that the determinant of any matrix is equal to the product
of its eigenvalues gives that λ2(L(x)) > 0 if and only
if det

(
PTL(x)P

)
> 0. Using this observation for state-

dependent networks G with edge weights as in Fig. 2(b),
the authors of [43] propose a class of potential fields φ :
Rdn → R+ that treat connectivity violation as an obstacle
in the configuration space. This is captured in the following
result.
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Proposition 4.1: Define the potential function

φ(x) = log det(PTL(x)P)−1, (15)

Then, the closed loop system (1) with u = −∇xφ(x) guaran-
tees that G is connected for all time.

Proof: The proof of this result relies on positive invari-
ance of the level sets φ−1([0, c]) = {x ∈ Rdn | φ(x) ≤ c} of
φ, which is due to the fact that φ̇(x) = −‖∇xφ(x)‖22 ≤ 0.

Note that the potential φ is a convex function of the Lapla-
cian matrix L [79]. However, dependence of the Laplacian on
the state via the edge weights makes φ a nonconvex function
of the x ∈ Rdn. Therefore, even though det(PTL(x)P)
increases as a result of Proposition 4.1, λ2(L(x)) might actu-
ally decrease. This implies that the proposed control scheme
ensures only local maximization of λ2(L(x)). The authors of
[43] conclude by providing a closed form expression for the
controller in Proposition 4.1.

Proposition 4.2: The controller u = −∇xφ(x) is given by

u =
1

detM(x)


tr
[
M−1(x) ∂

∂x1
M(x)

]
...

tr
[
M−1(x) ∂

∂xn
M(x)

]
 , (16)

where M(x) = PTL(x)P .
Proof: LetM(x) = PTL(x)P and denote by cij(x) the

cofactor of the entry mij(x) of the matrix M(x). Let C(x)
denote the cofactor matrix and denote by cTij(x) the (i, j)-th
entry of CT (x), i.e., cTij(x) = cji(x). Since the determinant is
a differentiable function of matrix entries, in particular it is a
sum of products of entries, the chain rule gives,

∂

∂xk
detM(x) =

n−1∑
i=1

n−1∑
j=1

(
∂

∂mij
detM(x)

)
∂

∂xk
mij(x)

For all j = 1, . . . , n − 1, computation of the Laplace
expansion of the determinant along the j-th column gives
detM(x) =

∑n−1
i=1 cij(x)mij(x) and hence ∂

∂mij
detM(x) =

cij(x). Therefore,

∂

∂xk
detM(x) =

n−1∑
i=1

n−1∑
j=1

cij(x)
∂

∂xk
mij(x)

=

n−1∑
j=1

n−1∑
i=1

cTji(x)
∂

∂xk
mij(x) = tr

[
CT (x)

∂

∂xk
M(x)

]
A direct consequence of the Laplace expansion of the deter-
minant is the identity I · detM(x) = M(x)CT (x). Propo-
sition 4.1 guarantees that λ2(L(x)) > 0 for all time, and
so detM(x) > 0 for all x ∈ Rdn. Thus M(x) is al-
ways positive definite, and hence invertible. Therefore, by
left multiplication of the previous identity by M−1(x), we
get M−1(x) · detM(x) = CT (x), and substituting in the
expression for ∂

∂xk
detM(x) we get,

∂

∂xk
detM(x) = tr

[
detM(x) · M−1(x)

∂

∂xk
M(x)

]
= detM(x) · tr

[
M−1(x)

∂

∂xk
M(x)

]
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Fig. 3. The artificial potential function ψij(‖xij‖2). The function is
symmetric with respect to xi and xj , and when bounded, it guarantees edge
preservation for ‖xij‖2 → ρ2. Here, the function is plotted for ρ2 = 0.5.

where M−1(x) =
(
PTL(x)P

)−1
and ∂

∂xk
M(x) =

PT ∂
∂xk
L(x)P , and the result follows directly from Proposition

4.1 and a simple application of the chain rule.

V. HYBRID FEEDBACK CONNECTIVITY CONTROL

The approach discussed in Section IV is centralized since
every robot requires knowledge of the whole network structure
captured by L(x) to compute its controller (Proposition 4.2).
The key idea employed in [56] and [46] to regulate the
structure of the proximity-based network G in a distributed
fashion is the introduction of a binary control signal σ ∈
{0, 1}n×n, such that

[σ]ij =

{
1, to activate the link (i, j) ∈ ~E
0, to deactivate the link (i, j) ∈ ~E .

This gives rise to the weighted graph Gσ = (V,Wσ) where
Wσ : V×V×R+ → R+ is the set of edge weights such that

wσij(t) = Wσ(i, j, t)

with wσij = wij [σ]ij , for wij given by (3). Therefore, the
control signal σ is essentially a discrete switch on the links
of the network G, but only affects existing links for which
wij > 0. The edge and neighbor sets associated with the
graph Gσ are defined by ~Eσ = {(i, j) | wσij > 0} and
Nσi = {j ∈ V | (i, j) ∈ ~Eσ}, respectively. Based on this
idea, the authors of [56] and [46] propose a hybrid model for
the mobile network G consisting of single integrator robots
(1) and controllers given by

uσi = −
∑
j∈Nσi

∇xiψij . (17)

The functions ψij : R+ → R+ are artificial potential
functions defined on the links of the network, which in the
case of connectivity control take the form (Fig. 10)

ψij =
1

ρ22 − ‖xij‖22
, (18)
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σij = 0 σij = 1

‖xij‖2 < ρ1

Fig. 4. Hysteresis protocol for adding interagent energy functions to the total
energy function only when agents get within a distance ρ1 of each other, rather
than when they first encounter each other at a distance ρ2.

to ensure link preservation between adjacent robots. The rest
of this section discusses two particular choices for the control
signal σ that ensure connectivity of the mobile network G.

A. Maintaining Communication Links

The approach followed in [56] relies on maintaining and
increasing the number of links in the network. Since

lim
‖xij‖2→ρ−2

ψij =∞,

infinite energies ψij take place in the control laws (17) when
two robots i and j form an edge between them, i.e., when
they move within distance ρ2 of each other. To address this
problem, the authors of [56] introduce a hysteresis into the
system through the signal σ given by the state machine in
Fig. 4. In particular, the signal [σ]ij is such that the total
energy is affected by an edge (i, j) that was previously not
contributing to the total energy only when ‖xij‖2 < ρ1,
where 0 < ρ1 < ρ2 is the predefined switching threshold
that regulates how fast inter-robot information is included in
the control law. Once the edge is allowed to contribute to the
total energy, it keeps doing so for all subsequent times. In
particular, the signal [σ]ij is defined by

[σ]ij(t
+) =

{
0, if [σ]ij(t

−) = 0 and ‖xij‖2 ≥ ρ1
1, otherwise

,

where the notation [σ]ij(t
+) and [σ]ij(t

−) denotes the value
of [σ]ij before and after the state transition in Fig. 4. It can
be shown that this control scheme maintains all links in Gσ
and, therefore, ensures connectivity of the network [46], [56].

Proposition 5.1: Consider the closed loop system (1)–(17).
Then, all links in Gσ are maintained.

Proof: Let

ψσ =
1

2

n∑
i=1

ψσi ,

i

No Connectivity

j

i

j

Violation

Violation

Connectivity

Fig. 5. Control challenges requiring knowledge of the network structure.
Without such knowledge, deletion of a link (i, j) can either violate connec-
tivity (right) or not (left).

where ψσi =
∑
j∈Nσi

ψij , denote the total energy of the system
and observe that

1

2

n∑
i=1

ψ̇σi =
1

2

n∑
i=1

∑
j∈Nσi

ẋTij∇xijψij

=
1

2

n∑
i=1

∑
j∈Nσi

(
ẋTi ∇xijψij − ẋTj ∇xijψij

)
=

1

2

n∑
i=1

∑
j∈Nσi

(
ẋTi ∇xiψij + ẋTj ∇xjψij

)
=

n∑
i=1

∑
j∈Nσi

ẋTi ∇xiψij =

n∑
i=1

ẋTi ∇xiψσi

by symmetry of the functions ψij . Therefore,

ψ̇σ = −
n∑
i=1

‖∇xiψσi ‖22 ≤ 0,

which implies that the level sets ψ−1σ ([0, c]) of ψσ are posi-
tively invariant and, hence, no links are lost.

B. Incorporating Link Deletions

The approach followed in [46] extends the hysteresis model
for link activations introduced in [56] to also account for
connectivity preserving link deactivations. For this, the authors
in [46] propose a set of control signals {σi}ni=1, where σi ∈
{0, 1}n×n denotes the signal associated with robot i, that give
rise to local neighbor sets Nσii defined as in Section V.

The key idea behind the approach developed in [46] is to
employ distributed consensus to populate the signals σi with
non-adjacent active links and then use these signals to check
link deactivations with respect to connectivity (Fig. 5). The
latter objective is possible since connectivity verification does
not require the actual edge weights, but only knowledge of
what links in the network are active, which is captured by the
signals σi. In other words, the signals σi can be thought of
as an abstraction of the adjacency matrices of the graphs Gσi
obtained when the signals σi are applied to G. The proposed
update rule is2

σi(s+ 1) = ¬(σi(s)↔ ωi(s)), (19)

where ωi ∈ {0, 1}n×n is such that [ωi]jk = 1 if a control
action is taken to activate or deactivate link (j, k) (Table I).

2The symbols ¬, ∧, ∨, → and ↔ stand for the boolean operators NOT,
AND, OR, IF, THEN and IF AND ONLY IF, respectively (in the case of
matrices, they are applied elementwise on their entries). The discrete time
semantics in (19) are associated with discrete communication time instances
between adjacent robots.
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Connectivity

j

i

Violation

l

k

Fig. 6. Control challenges due to multiple link deletions. In the absence of
an agreement protocol, simultaneous deletion of links (i, j) and (k, l) violates
connectivity.

TABLE I
LINK DYNAMICS

[σi(s)]jk [ωi(s)]jk [σi(s+ 1)]jk

1 1 0
1 0 1
0 1 1
0 0 0

It is shown in [46] that ωi can be decomposed into two
disjoint components ωai and ωdi regulating activations and
deactivations, respectively, as

ωi =


(¬σi ∧ (∨j∈Nσii σj)

)
︸ ︷︷ ︸

I

∨ (¬σi ∧ ηi)︸ ︷︷ ︸
II

 ∧ ωai

∨
(
σi ∧ ωdi

)
,

where
• the (k, l)-th entry of Term I (with k, l 6= i) is equal to 1

if there exists an active link between robots k and l that
is known to robot i’s neighbors, i.e.,

[
∨j∈Nσii σj

]
kl

= 1,
but is not known to robot i, i.e., [¬σi]kl = 1,

• the (k, l)-th entry of Term II with k = i or l = i is equal
to 1 if there does not exist an active link between robots
k and l, i.e., [¬σi]kl = 1, and is always zero if k, l 6= i.

Whether k = i or l = i in Term II is captured by the matrix
ηi = ∨j 6=i(eieTj ∨ ejeTi ), where ei is an n× 1 column vector
with all entries 0 except for the i-th entry that is 1. Clearly,
if the (k, l)-th entry of either Term I or Term II is equal to
1, then this entry indicates a link that can possibly become
activated if the activation control action becomes [ωai ]kl = 1.
Similarly, the control action ωdi can only deactivate links (k, l)
that robot i considers active, i.e., [σi]kl = 1. It is shown in
[46] that the dynamics (19) resemble a consensus algorithm
with inputs on the control signals σi that in the case of no
inputs, i.e., if ωai = 1n×n and ωdi = 0n×n, reduce to the usual
consensus update

σi := ∨j∈Nσii (σi ∨ σj) .

as desired. The choice of the control actions ωai and ωdi needs
to satisfy the following two conditions:
(a) σi is updated with all active links in Gσ and,
(b) connectivity of Gσ is not violated by link deactivations.
Condition (a) is satisfied by the link addition controller

ωai = (¬ηi)︸ ︷︷ ︸
III

∨
(
X <

ρ21
n
11T

)
︸ ︷︷ ︸

IV

, (20)

1

2

3

4

[(1, 2) 1]

[(2, 3) 2]

[(3, 4) 3]

[(4, 1) 4]

1

2

3

4 [(4, 1) 4]

[(4, 1) 4]

[(4, 1) 4]

[(3, 4) 3]

1

2

3

4 [(4, 1) 4]

[(4, 1) 4]

[(4, 1) 4]

[(4, 1) 4]

Initialization 1st	  Communication	  
Round

2nd	  Communication	  
Round

Fig. 7. An example of a link deactivation auction taking place in a network
of 4 robots. Next to every robot in brackets is shown its deletion request
ri = [(i, j) bi] containing a desired link (i, j) with j ∈ Si that if deactivated
does not violate connectivity, and the associated bid bi. Initialization is as
shown in the network at the left. During the first communication round, robot
1 compares its bid b1 = 1 with the bids of its neighbors, b4 = 4 and
b2 = 2. Since among its neighbors, robot 4 has placed the highest bid, robot
1 updates its request with the request of robot 4, i.e., r1 = [(4, 1) 4] (cf.
(21)). Similar updates take place for the requests of the other robots. After
two communication rounds, all robots have agreed on the request with the
highest bid [(4, 1) 4]. Then, robot 4 physically deactivates (dashed line) the
link (4, 1) and along with all other robots updates its signal σi (cf. (22)).

where
• Term III ensures that [ωai ]kl = 1 whenever k, l 6= i, i.e.,

that all active links in the network known to robot i’s
neighbors will be activated in σi as well, and

• Term IV ensures that [ωai ]kl = 1 whenever k = i
or l = i and the distance [X ]kl = ‖xkl‖22 between
robots k and l (with k = i or l = i) is lower than
the link activation threshold ρ1, i.e., links with close-by
agents will be activated (X ∈ Rn×n

+ denotes a Euclidean
distance matrix).

Condition (b) needs to address the fact that simultaneous
link deactivations by multiple non-adjacent robots may dis-
connect Gσ (Fig. 6). For this, the authors in [46] propose a
market-based framework to achieve agreement of all robots on
one single link deactivation as the outcome of every auction.
In particular, every robot i selects a neighbor j in the set

Si =
{
k ∈ Nσii | ‖xik‖2 ∈ [ρ1, ρ2), λ2(L−ki ) > 0

}
,

where L−ki is the Laplacian matrix of the network Gσi minus
the link (i, k), such that if the link (i, j) is deactivated,
then the network Gσi remains connected. The rest of the
algorithm relies on multi-hop propagation of deletion requests
ri = [ri1 ri2 ri3]T ∈ R3 containing the requested link
(ri1, ri2) ∈ ~E and an associated bid ri3 ∈ R+, such that
initially ri1 = i and ri2 = j for all robots i. With every
communication round, request ri is updated with the request
rj corresponding to the robot j that has placed the highest bid
rj3, i.e.,

ri = rj with j ∈ argmaxk∈Nσii
{ri3, rk3}, (21)

and employs a “maximum label” rule to break ties. Note that
(21) is essentially a maximum consensus update on the bids
ri3 and will converge to a common outcome ri for all robots
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(a) (b) (c)

Fig. 8. Execution of the rendezvous control strategy until the graph is a
complete graph.

when all bids have been compared to each other. If at least
one robot has placed a positive bid, i.e., if ri3 > 0, then the
controller

ωdi = ηi ∧
(
eri1e

T
ri2 ∨ eri2eTri1

)
, (22)

deactivates the link (ri1, ri2) from Gσi , and the process is
repeated for a new link deactivation (Fig. 7).

Communication time delays, packet losses, and the asym-
metric network structure, may result in auctions starting asyn-
chronously, outdated information being used for future deci-
sions, and consequently, robots reaching different decisions for
the same auction. In the absence of a common global clock,
the authors of [46] propose an event triggered synchronization
scheme, where a triggering event corresponds to receipt of a
communication message, that ensures that “fast” robots wait
for their “slower” peers to reach a decision too. Alltogether,
this framework gives rise to the following result.

Theorem 5.2 (Connectivity maintenance): Assume that the
network Gσ is initially connected. Then, the closed loop
system (19)–(20)–(22) guarantees that Gσ remains connected
for all time.

Proof: Assume that the local networks Gσi are initialized
with nearest neighbor links only. Then, the proof relies on the
following observations:
(a) All network estimates Gσi are spanning subgraphs of the

overall network Gσ , which implies that connectivity can
be checked locally for Gσi and then extended to Gσ .

(b) The market-based maximum consensus (21) ensures
agreement of all robots on the deactivation request which,
therefore, does not violate connectivity.

(c) Synchronization ensures that no outdated information is
used in (21).

Consequently, links can be deactivated continuously one-by-
one, without violating connectivity of the network.

VI. APPLICATIONS OF CONNECTIVITY CONTROL

A. Connectivity Preserving Rendezvous

A canonical example in which connectivity maintenance is
crucial is the so-called rendezvous problem. Here, the robots
are required to meet at a common, not a priori specified
location without relying on global positioning. Instead, the
only information available to them is the relative displacement,
i.e., robot i, at position xi, has access to xj−xi if i and j are

(a) (b) (c)

Fig. 9. Illustration of how the complete graph is changed to the desired
formation using only local information.

neighbors, i.e., if they are within sensing range of each other.
A linear control strategy that achieves this objective is

ẋi =
∑
j∈Ni

(xj − xi) (23)

as long as the graph G is connected for all times. However,
as shown in [56], initially connected proximity networks
that evolve according to (23) are not guaranteed to remain
connected throughout time. Instead, nonlinear coordination
models are needed, and one that achieves rendezvous while
ensuring connectivity (Problem 1), is the hybrid control strat-
egy under consideration in Proposition 5.1. In particular, the
model employed in [56] is

ẋi =
∑
j∈Nσi

2ρ22
(ρ22 − ‖xij‖22)2

(xj − xi), (24)

which, not only ensures that no edges are lost, but it also
achieves rendezvous in the sense that all agents asymptotically
approach the same location. This is due to the modified
potentials ψ̄ij =

‖xij‖22
ρ22−‖xij‖22

in (24) that along with link main-
tenance (Section V-A) also capture the rendezvous objective.
An example of this behavior is shown in Fig. 8.

It should be noted that the rendezvous control law often
serves a cohesion purpose, i.e., ensures that the robots in the
team stay close together. Nevertheless, exact rendezvous is not
necessarily a good thing and a reactive, collision-avoidance
controller could be added to the control strategy to avoid
overlapping of the actual robots.

B. Connectivity Preserving Formation Control

A variation to the rendezvous objective is the problem of
driving the robots to a desired target configuration, rather
than to a common target location. We assume that this target
configuration can be encoded through ζ1, . . . , ζn ∈ Rd, with
the interpretation that agent i should go to location ζi, for
i = 1, . . . , n. Since formations are considered rotationally
and translationally invariant objects in the configuration space,
their exact location is not of interest . Therefore, the formation
control objective is to achieve

xi = ζi + τ, ∀ i = 1, . . . , n

for some constant τ ∈ Rd. In other words, τ corresponds
to the constant offset from the target configuration that the
agents should agree on. But, by letting χi = xi − ζi, and
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Fig. 10. The artificial potential function ψij(‖xij‖2). The function is
symmetric with respect to xi and xj , and when bounded, it guarantees both
collision avoidance for ‖xij‖2 → 0 and edge preservation for ‖xij‖2 → ρ2.
Here, the function is plotted for ρ0 = 0.15, ρ1 = .35 and ρ2 = 0.5. The
dwell time at the switching threshold ρ2 ensures that the resulting switched
system is well defined [64].

running the connectivity preserving rendezvous algorithm (24)
over the χi’s instead of over the xi’s, it is ensured that the
offsets χi reach a common value which corresponds directly to
the offset τ [81]. Note that since ẋi = χ̇i, this strategy directly
gives desired motions for the robots in terms of their velocities.
Moreover, all that is needed to compute these control laws are
the relative displacements xi−xj between neighboring robots
as well as the desired predefined relative displacement ζi−ζj .
This is highlighted in Fig. 9.

C. Connectivity Preserving Flocking

Flocking has been given many definitions and various
models have been proposed so far [82]–[85]. Therefore, it is
understood quite differently by different authors. In this paper
we focus on the model proposed by Reynolds, developed to
simulate social aggregation phenomena, such as flocks of birds
and schools of fish [86]. Reynolds called the generic simulated
flocking creatures “boids” and developed his flocking model
based on three simple steering behaviors that describe how an
individual robot maneuvers given the positions and velocities
of its nearby flockmates:

• Alignment: Steer towards the average heading of local
flockmates.

• Separation: Steer to avoid crowding of local flockmates.
• Cohesion: Steer towards the average position of local

flockmates.

In Reynolds model, every robot has access to the whole
scenes geometric description, however, flocking requires in-
formation from nearest neighbor flockmates only. This neigh-
borhood depends on a distance and an angle from the robots
direction of motion, and can be thought of as model of limited
perception (such as fish in murky water) or as the region where
a robot’s motion is influenced by its flockmates. Superposition
of these three rules results in all robots moving as a flock while
avoiding collisions. Inspired by Reynolds model, the authors
of [87] proposed local control laws that allow a team of robots
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Fig. 11. Connectivity preserving flocking of n = 30 robots for a sparse
initial configuration where connectivity can not be trivially maintained. It can
be seen that the network remains connected while all robot velocities are
asymptotically aligned. Dotted lines indicate communication links that are
candidates for deletion (Fig. 10).

with double integrator dynamics

ẋi = vi (25a)

v̇i = −
∑
j∈Ni

(vi − vj)−
∑
j∈Ni

ψ̄ij (25b)

to align their velocities, move with a common speed and
achieve desired inter-robot distances while avoiding collisions
with each other. Stability results were obtained using non-
smooth analysis and algebraic graph theory and critically
relied on connectivity of the communication network. Based
on these results, the authors of [64] proposed integration of
the dynamics (25) with the connectivity control framework
developed in Section V-B and the artificial potentials (Fig. 10)

ψ̄ij =


1

‖xij‖22
+ P1(‖xij‖2), ‖xij‖2 ∈ (0, ρ0]

0, ‖xij‖2 ∈ (ρ0, ρ1)
1

ρ22−‖xij‖22
+ P2(‖xij‖2), ‖xij‖2 ∈ [ρ1, ρ2)

, (26)

with 0 < ρ0 < ρ1 < ρ2 and Pk(‖xij‖2) , ak‖xij‖22 +
bk‖xij‖2 + ck for k = 1, 2 such that ψij ∈ C2 in (0, ρ2). The
resulting multi-robot hybrid system was shown to guarantee
the flocking behavior of the team while preserving connectivity
of the network (Fig. 11).
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VII. CONCLUSIONS

In this paper we provided a theoretical framework for
controlling graph connectivity in mobile robot networks. We
presented a cohesive overview of the key results in [41]–[43],
[46], [56] and discussed basic notions of network connectivity
as well as control theoretic methods for connectivity preser-
vation. These methods relied on a variety of mathematical
tools, ranging from spectral graph theory and semidefinite
programming to maximize the algebraic connectivity of a
network, to gradient descent algorithms and hybrid systems
to ensure topology control in a least restrictive manner. We
also discussed applications of connectivity control to multi-
robot rendezvous [56], flocking [64] and formation control
[56], where so far, network connectivity had been considered
an assumption. A byproduct of this work was to classify the
available literature with respect to the connectivity metrics and
solution techniques and provide a reference for future research.
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