Spectral Graph Drawing

based on papers by Yehuda Koren

Presenter: Tana Wattanawaroon

April 28, 2015

The Graph Drawing Problem

- Given an undirected, weighted (and connected) graph $G=(V, E)$.

The Graph Drawing Problem

- Given an undirected, weighted (and connected) graph $G=(V, E)$.
- Draw edges using only straight segments.

The Graph Drawing Problem

- Given an undirected, weighted (and connected) graph $G=(V, E)$.
- Draw edges using only straight segments.
- Goal: place the vertices in p-dimensional space to get a "beautiful" layout.

The Graph Drawing Problem

(a)

(c)

(b)

(d)

The Graph Drawing Problem

We want:

- vertices connected by an edge to be close to each other

The Graph Drawing Problem

We want:

- vertices connected by an edge to be close to each other
- higher weighted edge: even closer

The Graph Drawing Problem

We want:

- vertices connected by an edge to be close to each other
- higher weighted edge: even closer
- but not too close in general

Formulation

- A p-dimensional layout defined by $x^{1}, \ldots, x^{p} \in \mathbb{R}^{n}$.

Formulation

- A p-dimensional layout defined by $x^{1}, \ldots, x^{p} \in \mathbb{R}^{n}$.
- Vertex i is at coordinates $\left(x^{1}(i), \ldots, x^{p}(i)\right)$.

Formulation

- A p-dimensional layout defined by $x^{1}, \ldots, x^{p} \in \mathbb{R}^{n}$.
- Vertex i is at coordinates $\left(x^{1}(i), \ldots, x^{p}(i)\right)$.
- Euclidean distance between vertices i and j

$$
d_{i j}=\sqrt{\sum_{k=1}^{p}\left(x^{k}(i)-x^{k}(j)\right)^{2}}
$$

Spectral answers to optimization problems

Theorem (1)

Given a symmetric matrix $A_{n \times n}$, denote by v^{1}, \ldots, v^{n} its eigenvectors, with corresponding eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then, v^{1}, \ldots, v^{p} are an optimal solution of the constrained minimization problem:

$$
\min _{x_{1}, \ldots, x_{P}} \sum_{k=1}^{p}\left(x^{k}\right)^{T} A x^{k}
$$

subject to

$$
\left(x^{k}\right)^{T} x^{l}=\delta_{k l}, \quad k, l=1, \ldots, p
$$

where $\delta_{k l}$ is 1 if $k=l, 0$ otherwise.

Spectral answers to optimization problems

Generalized eigenvector of (L, D) is u s.t.

$$
L u=\mu D u
$$

Spectral answers to optimization problems

Theorem (2)

Given a symmetric matrix $A_{n \times n}$ and a positive definite matrix $B_{n \times n}$, denote by v^{1}, \ldots, v^{n} the generalized eigenvectors of (A, B), with corresponding eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then, v^{1}, \ldots, v^{p} are an optimal solution of the constrained minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \sum_{k=1}^{p}\left(x^{k}\right)^{T} A x^{k}
$$

subject to

$$
\left(x^{k}\right)^{T} B x^{l}=\delta_{k l}, \quad k, l=1, \ldots, p
$$

where $\delta_{k l}$ is 1 if $k=l, 0$ otherwise.

Spectral answers to optimization problems

Corollary (1)

Given a symmetric matrix $A_{n \times n}$ and a positive definite matrix $B_{n \times n}$, denote by v^{1}, \ldots, v^{n} the generalized eigenvectors of (A, B), with corresponding eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then, v^{1}, \ldots, v^{p} are an optimal solution of the constrained minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{i=1}^{p}\left(x^{i}\right)^{T} A x^{i}}{\sum_{i=1}^{p}\left(x^{i}\right)^{T} B x^{i}}
$$

subject to

$$
\begin{aligned}
\left(x^{1}\right)^{T} B x^{1} & =\left(x^{2}\right)^{T} B x^{2}=\cdots=\left(x^{p}\right)^{T} B x^{p} \\
\left(x^{k}\right)^{T} B x^{l} & =0
\end{aligned}
$$

Spectral answers to optimization problems

Corollary (2)

Given a symmetric matrix $A_{n \times n}$ and a positive definite matrix $B_{n \times n}$, denote by v^{1}, \ldots, v^{n} the generalized eigenvectors of (A, B), with corresponding eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then, $\nu^{k+1}, \ldots, \nu^{k+p}$ are an optimal solution of the constrained minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{i=1}^{p}\left(x^{i}\right)^{T} A x^{i}}{\sum_{i=1}^{p}\left(x^{i}\right)^{T} B x^{i}}
$$

subject to

$$
\begin{aligned}
\left(x^{1}\right)^{T} B x^{1} & =\left(x^{2}\right)^{T} B x^{2}=\cdots=\left(x^{p}\right)^{T} B x^{p} \\
\left(x^{i}\right)^{T} B x^{j} & =0 \\
\left(x^{i}\right)^{T} B v^{j} & =0
\end{aligned}
$$

"Force-Directed" Method

- Minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{(i, j) \in E} w_{i j} d_{i j}^{2}}{\sum_{i<j} d_{i j}^{2}}
$$

subject to $\operatorname{Var}\left(x^{1}\right)=\ldots=\operatorname{Var}\left(x^{p}\right)$

$$
\text { and } \operatorname{Cov}\left(x^{k}, x^{l}\right)=0, \quad 1 \leq k \neq l \leq p
$$

"Force-Directed" Method

- Minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{(i, j) \in E} w_{i j} d_{i j}^{2}}{\sum_{i<j} d_{i j}^{2}}
$$

$$
\begin{aligned}
& \text { subject to } \operatorname{Var}\left(x^{1}\right)=\ldots=\operatorname{Var}\left(x^{p}\right) \\
& \text { and } \operatorname{Cov}\left(x^{k}, x^{l}\right)=0, \quad 1 \leq k \neq l \leq p
\end{aligned}
$$

- $\operatorname{Var}(x)=\frac{1}{n} \sum_{i=1}^{n}(x(i)-\bar{x})^{2}$

"Force-Directed" Method

- Minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{(i, j) \in E} w_{i j} d_{i j}^{2}}{\sum_{i<j} d_{i j}^{2}}
$$

$$
\begin{aligned}
& \text { subject to } \operatorname{Var}\left(x^{1}\right)=\ldots=\operatorname{Var}\left(x^{p}\right) \\
& \text { and } \operatorname{Cov}\left(x^{k}, x^{l}\right)=0, \quad 1 \leq k \neq l \leq p
\end{aligned}
$$

- $\operatorname{Var}(x)=\frac{1}{n} \sum_{i=1}^{n}(x(i)-\bar{x})^{2}$
- $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)\left(x^{l}(i)-\bar{x}^{l}\right)$

"Force-Directed" Method

- We can make $\bar{x}^{k}=0$ for each k i.e. $\sum_{i=1}^{n} x^{k}(i)=\left(x^{k}\right)^{T} \cdot 1_{n}=0$

"Force-Directed" Method

- We can make $\bar{x}^{k}=0$ for each k i.e. $\sum_{i=1}^{n} x^{k}(i)=\left(x^{k}\right)^{T} \cdot 1_{n}=0$
- $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)^{2}$ becomes $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n}\left(x^{k}\right)^{T} x^{k}$

"Force-Directed" Method

- We can make $\bar{x}^{k}=0$ for each k i.e. $\sum_{i=1}^{n} x^{k}(i)=\left(x^{k}\right)^{T} \cdot 1_{n}=0$
- $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)^{2}$ becomes $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n}\left(x^{k}\right)^{T} x^{k}$
- $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)\left(x^{l}(i)-\bar{x}^{l}\right)$ becomes $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n}\left(x^{k}\right)^{T}\left(x^{l}\right)$

"Force-Directed" Method

- We can make $\bar{x}^{k}=0$ for each k i.e. $\sum_{i=1}^{n} x^{k}(i)=\left(x^{k}\right)^{T} \cdot 1_{n}=0$
- $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)^{2}$
becomes $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n}\left(x^{k}\right)^{T} x^{k}$
- $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)\left(x^{l}(i)-\bar{x}^{l}\right)$ becomes $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n}\left(x^{k}\right)^{T}\left(x^{l}\right)$
- Thus we can reformulate the problem as

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{k=1}^{p}\left(x^{k}\right)^{T} L x^{k}}{\sum_{k=1}^{p}\left(x^{k}\right)^{T} x^{k}}
$$

$$
\begin{array}{rll}
\text { subject to }\left(x^{k}\right)^{T}\left(x^{l}\right)=\delta_{k l}, & & k, l=1, \ldots, p \\
\text { and }\left(x^{k}\right)^{T} \cdot 1_{n}=0, & & k=1, \ldots, p
\end{array}
$$

"Force-Directed" Method

- We can make $\bar{x}^{k}=0$ for each k i.e. $\sum_{i=1}^{n} x^{k}(i)=\left(x^{k}\right)^{T} \cdot 1_{n}=0$
- $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)^{2}$
becomes $\operatorname{Var}\left(x^{k}\right)=\frac{1}{n}\left(x^{k}\right)^{T} x^{k}$
- $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x^{k}(i)-\bar{x}^{k}\right)\left(x^{l}(i)-\bar{x}^{l}\right)$ becomes $\operatorname{Cov}\left(x^{k}, x^{l}\right)=\frac{1}{n}\left(x^{k}\right)^{T}\left(x^{l}\right)$
- Thus we can reformulate the problem as

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{k=1}^{p}\left(x^{k}\right)^{T} L x^{k}}{\sum_{k=1}^{p}\left(x^{k}\right)^{T} x^{k}}
$$

$$
\begin{array}{rll}
\text { subject to }\left(x^{k}\right)^{T}\left(x^{l}\right)=\delta_{k l}, & & k, l=1, \ldots, p \\
\text { and }\left(x^{k}\right)^{T} \cdot 1_{n}=0, & & k=1, \ldots, p
\end{array}
$$

- The answer is v^{2}, \ldots, v^{p+1}.

Degree-Normalized "Force-Directed" Method

- Minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{k=1}^{p}\left(x^{k}\right)^{T} L x^{k}}{\sum_{k=1}^{p}\left(x^{k}\right)^{T} D x^{k}}
$$

$$
\begin{array}{cl}
\text { subject to }\left(x^{k}\right)^{T} D\left(x^{l}\right)=\delta_{k l}, & k, l=1, \ldots, p \\
\text { and }\left(x^{k}\right)^{T} D 1_{n}=0, & k=1, \ldots, p
\end{array}
$$

Degree-Normalized "Force-Directed" Method

- Minimization problem:

$$
\min _{x_{1}, \ldots, x_{p}} \frac{\sum_{k=1}^{p}\left(x^{k}\right)^{T} L x^{k}}{\sum_{k=1}^{p}\left(x^{k}\right)^{T} D x^{k}}
$$

$$
\begin{array}{cl}
\text { subject to }\left(x^{k}\right)^{T} D\left(x^{l}\right)=\delta_{k l}, & k, l=1, \ldots, p \\
\text { and }\left(x^{k}\right)^{T} D 1_{n}=0, & k=1, \ldots, p
\end{array}
$$

- The answer is u^{2}, \ldots, u^{p+1}, the generalized eigenvectors of (L, D).

Weighted Centroid Characterization

- Aesthetically, a vertex should be at the weighted centroid of its neighbors.

Weighted Centroid Characterization

- Aesthetically, a vertex should be at the weighted centroid of its neighbors.
- Differentiating $x^{T} L x$ with respect to $x(i)$ gives

$$
\frac{\partial x^{T} L x}{\partial x(i)}=2 \sum_{j \in N(i)} w_{i j}(x(i)-x(j))
$$

which is zero when

$$
x(i)=\frac{\sum_{j \in N(i)} w_{i j} x(j)}{\operatorname{deg}(i)}
$$

Weighted Centroid Characterization

- Putting every vertex at the same position satisfies the centroid condition.

Weighted Centroid Characterization

- Putting every vertex at the same position satisfies the centroid condition.
- To prevent that, we allow the vertices to shift from the center by $\mu \cdot|x(i)|$.

$$
x(i)-\frac{\sum_{j \in N(i)} w_{i j} x(j)}{\operatorname{deg}(i)}=\mu \cdot x(i)
$$

Weighted Centroid Characterization

- Putting every vertex at the same position satisfies the centroid condition.
- To prevent that, we allow the vertices to shift from the center by $\mu \cdot|x(i)|$.

$$
x(i)-\frac{\sum_{j \in N(i)} w_{i j} x(j)}{\operatorname{deg}(i)}=\mu \cdot x(i)
$$

- This can be written, for all i together, as

$$
\begin{aligned}
D^{-1} L x & =\mu x \\
L x & =\mu D x
\end{aligned}
$$

which endorses the use of generalized eigenvectors of (L, D)

Weighted Centroid Characterization

- Using generalized eigenvectors of (L, D) gives

$$
x(i)-\frac{\sum_{j \in N(i)} w_{i j} x(j)}{\operatorname{deg}(i)}=\mu \cdot x(i)
$$

- Using Laplacian eigenvectors gives

$$
x(i)-\frac{\sum_{j \in N(i)} w_{i j} x(j)}{\operatorname{deg}(i)}=\lambda \cdot \operatorname{deg}(i)^{-1} \cdot x(i)
$$

Weighted Centroid Characterization

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$
- Power-iteration:

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$
- Power-iteration:
- start with a random vector x_{0} s.t. $x_{0}^{T} D 1_{n}=0$.

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$
- Power-iteration:
- start with a random vector x_{0} s.t. $x_{0}^{T} D 1_{n}=0$.
- $x_{i+1}=D^{-1} A x_{i}$

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$
- Power-iteration:
- start with a random vector x_{0} s.t. $x_{0}^{T} D 1_{n}=0$.
- $x_{i+1}=D^{-1} A x_{i}$
- or rather, $x_{i+1}=\frac{1}{2}\left(I+D^{-1} A\right) x_{i}$

Algorithm

- The generalized eigenvectors of (L, D) are also the generalized eigenvectors of (A, D) (with reversed-order eigenvalues).
- $D^{-1} A x=\mu x$
- Power-iteration:
- start with a random vector x_{0} s.t. $x_{0}^{T} D 1_{n}=0$.
- $x_{i+1}=D^{-1} A x_{i}$
- or rather, $x_{i+1}=\frac{1}{2}\left(I+D^{-1} A\right) x_{i}$
- Random walk!

References

- Koren, Yehuda. "Drawing graphs by eigenvectors: theory and practice." Computers \& Mathematics with Applications 49.11 (2005): 1867-1888.
- Koren, Yehuda. "On spectral graph drawing." Computing and Combinatorics. Springer Berlin Heidelberg, 2003. 496-508.

