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The Graph Drawing Problem

Given an undirected, weighted (and connected) graph G= (V, E).

Draw edges using only straight segments.

Goal: place the vertices in p-dimensional space to get a “beautiful”
layout.
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The Graph Drawing Problem

We want:

vertices connected by an edge to be close to each other

higher weighted edge: even closer

but not too close in general
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Formulation

A p-dimensional layout defined by x1, . . . , xp ∈ Rn.

Vertex i is at coordinates (x1(i), . . . , xp(i)).

Euclidean distance between vertices i and j

dij =

√

√

√

√

p
∑

k=1

(xk(i)− xk(j))2
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Spectral answers to optimization problems

Theorem (1)

Given a symmetric matrix An×n, denote by v1, . . . , vn its eigenvectors, with
corresponding eigenvalues λ1 ≤ · · · ≤ λn. Then, v1, . . . , vp are an optimal
solution of the constrained minimization problem:

min
x1,...,xp

p
∑

k=1

(xk)TAxk

subject to
(xk)Txl = δkl, k, l= 1, . . . , p

where δkl is 1 if k= l, 0 otherwise.

Tana Wattanawaroon Spectral Graph Drawing April 28, 2015 6 / 19



Spectral answers to optimization problems

Generalized eigenvector of (L, D) is u s.t.

Lu= µDu
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Spectral answers to optimization problems

Theorem (2)

Given a symmetric matrix An×n and a positive definite matrix Bn×n, denote
by v1, . . . , vn the generalized eigenvectors of (A, B), with corresponding
eigenvalues λ1 ≤ · · · ≤ λn. Then, v1, . . . , vp are an optimal solution of the
constrained minimization problem:

min
x1,...,xp

p
∑

k=1

(xk)TAxk

subject to
(xk)TBxl = δkl, k, l= 1, . . . , p

where δkl is 1 if k= l, 0 otherwise.
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Spectral answers to optimization problems

Corollary (1)

Given a symmetric matrix An×n and a positive definite matrix Bn×n, denote
by v1, . . . , vn the generalized eigenvectors of (A, B), with corresponding
eigenvalues λ1 ≤ · · · ≤ λn. Then, v1, . . . , vp are an optimal solution of the
constrained minimization problem:

min
x1,...,xp

∑p
i=1(x

i)TAxi

∑p
i=1(x

i)TBxi

subject to

(x1)TBx1 = (x2)TBx2 = · · ·= (xp)TBxp

(xk)TBxl = 0
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Spectral answers to optimization problems

Corollary (2)

Given a symmetric matrix An×n and a positive definite matrix Bn×n, denote
by v1, . . . , vn the generalized eigenvectors of (A, B), with corresponding
eigenvalues λ1 ≤ · · · ≤ λn. Then, vk+1, . . . , vk+p are an optimal solution of
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“Force-Directed” Method

Minimization problem:

min
x1,...,xp

∑

(i,j)∈E wijd
2
ij

∑

i<j d
2
ij

subject to Var(x1) = . . .= Var(xp)

and Cov(xk, xl) = 0, 1≤ k 6= l≤ p

Var(x) = 1
n

∑n
i=1(x(i)− x̄)2

Cov(xk, xl) = 1
n

∑n
i=1(x

k(i)− x̄k)(xl(i)− x̄l)
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“Force-Directed” Method

We can make x̄k = 0 for each k i.e.
∑n

i=1 xk(i) = (xk)T · 1n = 0

Var(xk) = 1
n

∑n
i=1(x

k(i)− x̄k)2

becomes Var(xk) = 1
n(x

k)Txk

Cov(xk, xl) = 1
n

∑n
i=1(x

k(i)− x̄k)(xl(i)− x̄l)
becomes Cov(xk, xl) = 1

n(x
k)T(xl)

Thus we can reformulate the problem as

min
x1,...,xp

∑p
k=1(x

k)TLxk

∑p
k=1(x

k)Txk

subject to (xk)T(xl) = δkl, k, l= 1, . . . , p

and (xk)T · 1n = 0, k= 1, . . . , p

The answer is v2, . . . , vp+1.
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Degree-Normalized “Force-Directed” Method

Minimization problem:

min
x1,...,xp

∑p
k=1(x

k)TLxk

∑p
k=1(x

k)TDxk

subject to (xk)TD(xl) = δkl, k, l= 1, . . . , p

and (xk)TD1n = 0, k= 1, . . . , p

The answer is u2, . . . , up+1, the generalized eigenvectors of (L, D).
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Weighted Centroid Characterization

Aesthetically, a vertex should be at the weighted centroid of its
neighbors.

Differentiating xTLx with respect to x(i) gives

∂ xTLx
∂ x(i)

= 2
∑

j∈N(i)

wij(x(i)− x(j))

which is zero when

x(i) =

∑

j∈N(i)wijx(j)

deg(i)
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Weighted Centroid Characterization

Putting every vertex at the same position satisfies the centroid
condition.

To prevent that, we allow the vertices to shift from the center by
µ · |x(i)|.

x(i)−

∑

j∈N(i)wijx(j)

deg(i)
= µ · x(i)

This can be written, for all i together, as

D−1Lx = µx

Lx = µDx

which endorses the use of generalized eigenvectors of (L, D)
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Weighted Centroid Characterization

Using generalized eigenvectors of (L, D) gives

x(i)−

∑

j∈N(i)wijx(j)

deg(i)
= µ · x(i)

Using Laplacian eigenvectors gives

x(i)−

∑

j∈N(i)wijx(j)

deg(i)
= λ · deg(i)−1 · x(i)
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Weighted Centroid Characterization
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Algorithm

The generalized eigenvectors of (L, D) are also the generalized
eigenvectors of (A, D) (with reversed-order eigenvalues).

D−1Ax = µx
Power-iteration:

start with a random vector x0 s.t. xT
0D1n = 0.

xi+1 = D−1Axi
or rather, xi+1 =

1
2 (I+D−1A)xi

Random walk!
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