CS 598: Spectral Graph
Theory. Lecture 18

Graph Sparsification by
Effective Resistances

Alexandra Kolla



Today

» Graph approximations.

» Sparsifiers for all graphs.

» Approximating a Projection Operator.
» Matrix Chernoff Bounds.



Sparsification
graph G by sparse graph H

[BK’96],[ST’04],[SS’08],[BSS'09]
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H is faster to compute with than G
Can be used as proxy for G in computations



Graphic Inequalities

e In Lecture 4, we defined
G:H if Loy Ly
Or, equivalently, v'Lov > v L v forallv

» We say that G is an € — approximation of
H if
(1-¢e)H<G=<(1+e¢e)H



Approximations of the Complete
Graph

e Let G be ad-reqular graph whose adjacency eigenvalues
satisfy |a;| < ed.

» Asits Laplacian eigenvalues satisfy ; = d — a;, all non-zero
eigenvalues are between (1 — €)d and (1 + €)d.

» This means that for all x orthogonal to the all-one’s vector
(1—edxTx < xTLcx < (1 +€e)dxTx
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Sparsification

» We can approximate a graph with 0(n?)
edges (complete graph) by a graph with
O(dn) edges (expander).

* Today: In general, we can € —approximate
any graph with another graph that has
O(e “nlogn) edges. (can be improved
to O(e~%n) edges)



Sparsification

G

any graph G by sparse graph H!!!
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H is faster to compute with than G
Eigenvalues of H and G are similar
Boundaries of all sets are similar (cuts)
Effective Resistances are similar
Solutions of linear equations in the two
Laplacians are similar.



Motivation:Linear System Solving

e Wanttosolve Ax = b

e Assume (1 —e)AsSB<(1+¢€)A

B is easier to work with (sparser) than A
B lAx =B b= Ix=x



Sparsification Plan

 Start with empty graph
» We will randomly sample edges:

» Create probability distribution over
edges p,, repeatedly use this to choose
edges and add to the graph

o If we include an edge, add it with weight
1/pe.

° Xbe =1
» Repeat g times, for some g tbd.



Sparsification Plan

» Equivalently to independently sampling
matrices R;,1 = 1, ..., g such that

R, = piLe with probability pe.

* E(R;) = 2e 1\Pe Pele = L = Lg
» Qur sparsifier at the end is:

1
LH:E Z Ri

i=1toq



Sparsification Plan

1
* E(Ly) = 2 Yic110q ERD) = Lg

* We need to show that it is close wit
probability. Would be true if we hac
values random variables, but don’t

what happens with matrix values R.
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A Transformation

* His an epsilon approximation of G iff

(1—e)xTLex < TLHx (1+e)xTLeox
(1-e) K H<A+eb>
-eG < H - G et >
- € LG < LG LH ELG

;e M- L 2Lyl < ell =

|6 ?LuLg? - || < e



A Transformation
|5t ?LaLg? - || < e

Where Il is projection orthogonal to the nullspace.

1 11 1 1
— 2 E(L*R;L.*) =L >2L; L2 =T
i=1toq



A Transformation

New plan is to sample matrices from
1 1

With some probability such that at the end,

we get a matrix
1 1
M =— _Mi
q &= Pe
Which approximates the “identity”, in the

sense thatis it close w.h.p to E(M)=II



Choosing the Probabilities

1 1
M=— _Mi
q Pe

Choose probabilities to be proportional to

effective resistances.
1 1

1 11
Pe = n—1 ”LGZLeLGz” —

1
— Rerr(e)

* Norm of each matrix [|M; /p.|| =n—1

1




Matrix Chernoff Bound

Theorem. Let Il be a projection matrix and
M be a random psd matrix such that E(M)=

[Tand HMI‘ <v.LetM,,.., M, bei.id
from M. Then, for every € > 0

Pr II—zM —T0|| > €| < 2ne—*a/4v

Finish the result by taklng

g = 5nin(2n)/e* and observing that
v=n-—1



Matrix Chernoff Bound

Theorem. Let I be a projection matrixand M
be a random psd matrix such that E(M)= II
and HMI‘ <v.LetM,..,M, bei.idfromM.

Then, foreverye > 0

) _
Pr ||52Ml-—11|| > ¢e| < 2ne~€"9/4v
: l i

Recall that fori.i.d mean-p bounded variables:
Pr[| X, X; — np| = en] < 2~ € "/Z(@ai—b)°



