CS 598: Spectral Graph Theory. Lecture 14

 Spectral Algorithms for

 Spectral Algorithms for Unique Games

 Unique Games}

Alexandra Kolla

The MAX CUT Problem

- Input: G = (V,E)

The MAX CUT Problem

- Input: $G=(V, E)$
- Objective : Partition G in $\left(S, S^{\prime}\right)$ as to MAXIMIZE number of edges cut
- [Karp '72]: MAX CUT is NP-complete
- What about approximating MAX CUT?

The MAX CUT Problem

－Input：$G=(V, E)$
Objective ：Partition G in $\left(S, S^{\prime}\right)$ as to MAXIMIZE number of edges cut Approximation algorfthns：
－Random cut（trivial）：half of optimal
－［GW＇94］：$\alpha_{6 w=0.878}$ approximation algorithm ofnィィックー！

The MAX CUT Problem

－Input：$G=(V, E)$
Objective ：Partition G in $\left(S, S^{\prime}\right)$ as to MAXIMIZE number of edges cut Approximation algorthms：
－Random cut（trivial）：half of optimal
［GW＇94］：$\alpha_{6 w}=0.878$ approximation algorithm of Mィィッール

Can We Hope for Better Approximation Algorithms in P?

Previous inapproximability not a coincidence! Unique Games Conjecture (UGC) captures exact inapproximability of many more problems

Problem	Best Approximation Algorithm Known	UGC-Hardness
MaxCut	$0.878[\mathrm{GW} 94]$	$0.878[\mathrm{KKMO} 07]$
Vertex Cover		2
Max k-CSP	$\Omega\left(\mathrm{k} / 2^{k}\right)[$ [CMM071	

What are Unique Games?

I. Unique Games are popular not only among computer scientist!

bing70 million pages

What are Unique Games?

I. Unique Games are popular not only among computer scientist!

bing70 million pages

What are Unique Games?

I. Unique Games are popular not only among computer scientist!

bing	Unique Ganes	
	anesur	nespmamem
	Uninuesmes	Unamen came
minmoneme		mim
mixemumam		Uliaum

bing70 million pages

I Maps News Shopping Gmail more

alexkolla@gmail.com $\mid \underline{\text { Web History } \mid ~ \underline{\text { Setti }}}$
13. Unique Games are related to the Unique Games Conjecture...

Unique Games = Unique Label Cover Problem

Given: set of constraints
Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

$$
\begin{aligned}
& \text { EXAMPLE } \\
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

Unique Games, an Example

Given: set of constraints

Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{c}_{\mathrm{ij}} \bmod \mathrm{k}$
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

EXAMPLE

$$
\begin{aligned}
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

The constraint graph

Unique Games, an Example

Given: set of constraints

Linear Equations mod k :
$x_{i}-x_{j}=c_{i j} \bmod k$
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

EXAMPLE

$$
\begin{aligned}
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3)
\end{aligned}
$$

$$
x_{1}-x_{3}=1(\bmod 3)
$$

$$
\begin{aligned}
& V \\
& V \\
& x
\end{aligned}
$$

The constraint graph

Unique Games Conjecture

[Khot'02] For every positive ε and δ there is a large enough k s.t. for some instance of Unique Games with alphabet size k and OPT $>\mid-\varepsilon$, it is NP hard to satisfy a δ fraction of all constraints.

- Given UG instance where 99% of constraints are satisfiable, it is NP-hard to even satisfy 0.1\%

Unique Games Conjecture

Embarrassing not to know, since solving systems of linear equations is easy.

- How? (Gaussian elimination, propagation...)

Where to begin if we want to refute UGC?

- Several attempts in recent years to refute or prove UGC.
- Lot of progress but still no consensus.

Plan of attack: start ruling out cases.

- Classify graphs according to their "spectral profile"

Easy (eigenvalues)

- Expanders [AKKTSV'08,KT’08],
- Local expanders, graphs with relatively few large eigenvalues [AIMS'09,SR'09, K'I0]

Find distributions that are hard?
Random Instances : NO! Follows from expander result.
Quasi-Random Instances? [KMM' 10$]$ NO!

Summary:Algorithmic Results for UG

	Algorithm	On I-\& instances	
General Graphs	Khot	$1-O\left(k^{2} \varepsilon^{1 / 5} \sqrt{\log (1 / \varepsilon)}\right)$	
	Trevisan	$1-\mathrm{O}\left({ }^{3} \sqrt{ }(\varepsilon \log \mathrm{n})\right)$	
	Gupta-Talwar	$\mathrm{I}-\mathrm{O}(\varepsilon \log \mathrm{n})$	
Special Graphs	CMMI	$\mathrm{k}^{-8 / 2-8}$	
	CMM2	$\text { I-O(} \varepsilon \sqrt{ } \log \sqrt{l o g k})$	
Expander	AKKTSV'08 KT'08,MM'। 10	Constant, depend on conductance	for SDP, there is
$\begin{gathered} \text { Local } \\ \text { expander } \\ \hline \end{gathered}$	AIMS'09, SR’09	Constant, depends on local expansion	

Almost all above approaches were LP or SDP based

Summary:Algorithmic Results for UG

Special Graphs

Expander
Local expander

Few large eigenvalues

On I-\& instances
$\mathrm{I}-\mathrm{O}\left(\mathrm{k}^{2} \varepsilon^{1 / 5} \sqrt{\log (1 / \varepsilon)}\right)$ $1-O(\sqrt[3]{ }(\varepsilon \log n))$
I-O($\varepsilon \log n$)
CMMI
CMM2
AKKTSV'08
KT'08,MM'। 0
AIMS'09, SR’09

K'IO

Constant, depend on conductance

Constant, depends on local expansion

Tight for SDP, there is counterexample

Purely SPECTRAL Approach depends on eigenspace

Summary:Algorithmic Results for UG

General
Graphs

Special Graphs

Expander
 Local
 expander
 Few large
 eigenvalues

Khot
Trevisan
Gupta-Talwar
CMMI $\mathrm{k}^{-\varepsilon / 2-\varepsilon}$

CMM2
I-O($\varepsilon \sqrt{ } \operatorname{logn} \sqrt{ } \log \mathrm{k})$

Summary:Algorithmic Results for UG

General
Graphs

Special Graphs

Expander

 $\mathrm{k}^{-\varepsilon / 2-\varepsilon}$I-O($\varepsilon \sqrt{ } \operatorname{logn} \sqrt{ } \log k)$
Expander

Few large
eigenvalues

Khot
Trevisan
Gupta-Talwar
CMMI
CMM2

Algorithm

AKKTSV'08
KT'08,MM'IO
AIMS'09 SR’09

K'IO

Constant, depends on conductance

Constant, depends on local expansion

Quality and running time debends on eiaenspace

ABS' 10 : Subexponential time algorithm for ANY instance

Summary:Algorithmic Results for UG

Expander

Algorithm

Khot
Trevisan
Gupta-Talwar
CMMI $\mathrm{k}^{-\varepsilon / 2-\varepsilon}$

CMM2
I-O($\varepsilon \sqrt{ } \operatorname{logn} \sqrt{ } \log k)$

Expander
Local expander
Few large eigenvalues

Constant, depends on conductance

AIMS'09, Constant, depends SR’09 on local expansion

K'IO Quality and running time dononde an oinonenono

KMM' IO: Semi-Random instances are easy

Unique Games = Unique Label Cover Problem

Given: set of constraints
Linear Equations mod k :
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{j}}=\mathrm{C}_{\mathrm{ij}}$ mod k
GOAL k="alphabet" size
Find labeling that satisfies maximum number of constraints.

$$
\begin{aligned}
& \text { EXAMPLE } \\
& x_{1}-x_{2}=0(\bmod 3) \\
& x_{2}-x_{3}=0(\bmod 3) \\
& x_{1}-x_{3}=1(\bmod 3)
\end{aligned}
$$

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each vertex with k vertices- one for each label

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each vertex with k vertices- one for each label
-Replace each edge with the "permutation matching"

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each edge with the "permutation matching"

Unique Games and Graphs

1. The "constraint graph"
2. The "label-extended" graph

-Replace each edge with the "permutation matching"

More Graph Theory:The Label-Extended Graph

GRAPH THEORY?

it's a graph, it has adjacency matrix!

M has each non - zero entry (u, w) replaced by a block corresponding to the permutation on edge

Sketch UGC False on Expanders

UGC FALSE on expanders[AKKTSV'08,KT'08 MM'I0]:

 When UG instance highly satisfiable and graph is expander, ptime algorithm finds labeling that satisfies 99% of the constraintsWhy Expanders? Expansion of Unique Games and Sparsest Cut

Problem	Best Approximation Algorithm Known	UGC-Hardness
MaxCut	$0.878[\mathrm{GW} 94]$	$0.878[$ KKMO07]
Vertex Cover		2
Max k-CSP	$\Omega\left(\mathrm{k} / 2^{k}\right)[$ CMM07v	$0\left(\mathrm{k} / 2^{k}\right)[$ [ST,AM,GR

Uniform
Sparsest

No hardness even assuming UGC unless expansion

Why Expanders? Expansion of Unique Games and Sparsest Cut

No hardness for Sparsest Cut even assuming UGC!
Unlikely that there is reduction from UG to SPARSEST CUT

...unless UG instance has expansion! [KV,manuscript] Because then any sparse cut would correspond to a good labeling

Off-the-record belief that expanders were hardest instances

Proof with Graph Theory: From Labelings to Spectra

-Set S that contains exactly one "small" node from each node group $=$ labeling

Proof with Graph Theory: From Labelings to Spectra

- Set S that contains exactly one "small" node from each node group = labeling
- Corresponds to a cut $\left(S, S^{\prime}\right)$.
-Corresponds to a "characteristic vector".

$$
X_{(0,0,0)}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Proof Intuition: a Perfect Game

Let's look at a perfectly satisfiable

game for intuition...

Graph is disconnected, it has second eigenvalue $\lambda=\mathrm{d}$ (in fact, it has k eigenvalues $=\mathrm{d}$)

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)

If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

Let's look at a perfectly satisfiable

 game for intuition...
A $1-\varepsilon$ game is an
 almost-perfectlysatisfiable one
 $=\mathrm{d}$

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. $(d-\lambda=0)$

If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

Let's look at a perfectly satisfiable

 game for intuition...
A $1-\varepsilon$ game is an
 almost-perfectlysatisfiable one
 $=\mathrm{d}$

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$) expander
If graph G was originally connected, those are the only "sparsest cuts".
They correspond to perfect labelings.

Proof Intuition: a Perfect Game

Let's look at a perfectly satisfiable

 game for intuition...
A $1-\varepsilon$ game is an
 almost-perfectlysatisfiable one
 $=\mathrm{d}$

As mentioned earlier, we can find cuts from those eigenvectors that cut zero edges. ($d-\lambda=0$)
expander
If graph G was originally connected, those are the only "sparsest cuts".
They correspond to almost-perfect labelings

Proof: Reverse Engineering + Graph Spectra

I- ε Game

Proof: Reverse Engineering + Graph Spectra

perturbed completely satisfiable game

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

Think of it as "coming from" adversarialy perturbed completely satisfiable game

Proof: Reverse Engineering + Graph Spectra

"Labeling" eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few eigenvectors:

The k"labeling vectors" have large projection onto espace W with evalues >(1-200ع)d

Proof: Reverse Engineering + Graph Spectra

(1) Perfect Game:
 $\chi_{(0,0,0)}$

"Labeling" eigenvectors: eigenvectors:

The k-dimensional espace Y of devalues equal to d contains all the information for the best labeling

The k"labeling vectors" have large projection onto espace W with devalues $>(\mathrm{I}-200 \varepsilon) \mathrm{d}$
for $|\chi|=1, \chi^{T} \tilde{M}_{\chi}=d$ $\chi^{\top} M_{\chi} \geq(1-2 \varepsilon) d$

Write: $\chi=\alpha w+\beta w_{\perp}$

$$
(1-2 \varepsilon) d \leq \chi^{T} M \chi=a^{2} w^{T} M w+\beta^{2} w_{\perp}^{T} M w_{\perp}
$$

$$
\leq a^{2} d+\beta^{2}(1-200 \varepsilon) d \Rightarrow \left\lvert\, \beta \leq \frac{1}{10}\right.
$$

Proof: Reverse Engineering + Graph Spectra

Perfect Game:

"Labeling" eigenvectors: eigenvectors:

The k-dimensional espace Y of evalues equal to d contains all the information for the best labeling

First few

The k "labeling vectors" have large projection onto espace W with evalues >(I-200ع)d

If we knew the projection w of χ then we could just "read off" a good labeling

Searching for a Needle in a Haystack?

But we need to find a particular vector in this whole space W!

Searching for a Needle, but "Efficiently"

But we need to find a particular vector in this whole space W!

Idea:

Discretize the space by net!

One point of the net is close to the vector we want We find this vector and then "read offythe coordinates

Searching for a Needle, but "Efficiently"

Idea:

Discretize the space by net!

Algorithm runs in time ~ \#points in the net =
exponential in the dimension of eigenspace W

The Dimension of W for Expanders

(Spectral Gap) $=$

$$
d-\lambda=\gamma d
$$

The Dimension of W for Expanders

(Spectral gap between $\left.Y, Y_{\perp}\right)=$ absgap $=\gamma d$

The Dimension of W for Expanders

(Spectral gap between $\left.Y, Y_{\perp}\right)=$ absgap $=\gamma d$

W is "perturbed analog" of Y

"The $\sin \mu$ " Theorem [DK'70] Angle between Y and "perturbed analog of Y" small

Equivalently, we can write every vector w in W as $w=\alpha y+\beta y_{\perp}, y$ in Y

$$
|\beta| \leq \frac{\left\|\left(M-M_{\epsilon}\right) w\right\|}{a b s g a p} \leq O\left(\sqrt{\frac{\epsilon}{\gamma^{3}}}\right)
$$

The Dimension of W for Expanders

(Spectral gap between Y, Y_{\perp}) = absgap=
yd

$$
\text { W is "perturbed analog" of } Y
$$

"The $\sin \mu$ " Theorem [DK'70] Angle between Y and "perturbed analog ofY" small

W is close to Y so $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{Y})=k$

A General Algorithm

For expanders, W is close to Y so $\operatorname{dim}(W) \leq \operatorname{dim}(Y)=k$

Running time is

$2^{k} \approx \mathbf{2 d g}^{g n} \approx \operatorname{poly}(n)$

Algorithm runs in time ~ \#points in the net
二
exponential in the dimension of eigenspace W

A General Algorithm

Algorithm runs in time ~ \#points in the net

$$
=
$$

exponential in the dimension of eigenspace W

Another Special Case:The "Khot-Vishnoi"

> Graph that "cheats" a canonical semidefinite program for UG

We show: Eigenspace in question has polylogarithmic dimension

Algorithm runs in time ~ \#points in the net
二
exponential in the dimension of eigenspace

Another Special Case:The "Khot-Vishnoi"

 (1) 〇 $\left(\begin{array}{l}1 \\ 0\end{array}\right.$ Graph
UGC and the Spectrum of General Graphs

- After expanders, we realized that other constraint graphs are easy for UGC.
- How "easy" the graph is, depends on the number of large (close to d) eigenvalues of the adjacency matrix of the label-extended graph.
- Could solve previously "hardest" cases, where all Other techniques failed.
- Essentially only one case left, reflected by the Boolean Hypercube!! (?)

Open Questions

Disprove the Unique Games Conjecture

- Can we argue about UGC on the cube?
-About 2 years ago a group of Quantum Computing Theorists came together and tried to find a quantum algorithm... -Proved Maximal Inequality on the Cube, failed for UGC.
-What is the quantum complexity of UGC?

THANKYOU!

