CS 598: Spectral Graph Theory. Lecture 13

Eigenvalues of Random Graphs (or, Random Graphs are Expanders)

Alexandra Kolla

Today

- Define random graph model.
- Concentration inequalities
- Bounding Raleigh Quotients
- Explain Trace method

Erdos-Renyi model

- Set n of vertices.
- Between every 2 vertices (u, v) add edge with probability p: $G(n, p)$.
- For this lecture $p=\frac{1}{2}$.
- Adjacency matrix has entries $A(i, \mathrm{j})=$ 0 with probability $1 / 2$ and $A(i, \mathrm{j})=1$ with probability $1 / 2$.

The Expectation

- Let $M=\mathrm{E}(\mathrm{A})=\frac{1}{2} A_{K_{n}}=\frac{1}{2}\left(J_{n}-I_{n}\right)$ the expectation of the adjacency matrix
- One eigenvalue is $(\mathrm{n}-1) / 2$ and the others are $-1 / 2$.
- We will show that $\|A-M\| \leq 1.34 \sqrt{ } n$ with exponentially high probability.
- $\|A-M\|=\max _{i}\left|\lambda_{i}(A-M)\right|=$ $\max _{\mathrm{x}}\left|\mathrm{x}^{\mathrm{T}} \mathrm{Rx} / \mathrm{x}^{\mathrm{T}} \mathrm{x}\right|$, where $\mathrm{R}=\mathrm{A}-\mathrm{M}$.

One Raleigh Quotient

- $R(i, j)$ is mean-zero r.v taking values $\pm 1 / 2$.
- Fix any unit vector x :

$$
x^{T} R x=\sum_{i<j} 2 r_{i j} x(i) x(j)
$$

- This is sum of independent r.v, with mean zero.
- Hoeffding bound for i.i.d $X_{i},\left|X_{i}\right| \in$ $\left[a_{i}, b_{i}\right], E\left(X_{i}\right)=\mu$:

$$
\operatorname{Pr}\left[\sum_{i=1 \text { to } d} X_{i} \geq t+\mu\right] \leq e^{-2 t^{2} / \Sigma_{i}\left(b_{i}-a_{i}\right)^{2}}
$$

One Raleigh Quotient

- Lemma. For every unit vector x

$$
\operatorname{Pr}_{R}\left[\left|x^{T} R x\right| \geq t\right] \leq 2 e^{-t^{2}}
$$

- Kind of useless, there are infinitely many x's!!!

One Raleigh Quotient

- Lemma. Let R be a symmetric matrix and let u be a unit eigenvector of R whose eigenvalue has absolute value $\|R\|$. If x is another unit vector such that $\langle v, x\rangle \geq$ $\sqrt{3} / 2$, then $x^{T} R x \geq \frac{1}{2}\|R\|$.

How many vectors are close?

- Lemma. Let v be an arbitrary unit vector and x a random unit vector. Then

$$
\operatorname{Pr}\left[\langle x, v\rangle \geq \frac{\sqrt{3}}{2}\right] \geq \frac{1}{\sqrt{\pi} n 2^{n-1}}
$$

The Probabilistic Argument

- Theorem. Let R be a symmetric matrix as above.

$$
\operatorname{Pr}[\|R\| \geq t] \leq \sqrt{\pi} \mathrm{n} 2^{\mathrm{n}} e^{-t^{2} / 4}
$$

An Alternative Argument

- Trace method used to bound eigenvalues of matrices. More powerful sometimes (e.g. eigenvalues of d-regular graphs)
- $\operatorname{Tr}\left(A^{k}\right)=\sum_{i} \lambda_{i}^{k}=\sum k-\operatorname{walks}(i, i)$
- $\|R\| \leq\left(\operatorname{Tr}\left(R^{k}\right)\right)^{1 / k}$

