CS 598: Spectral Graph Theory. Lecture 12

A construction of Expanders

Alexandra Kolla

Today

- Determnistic construction of expanders
- Start from small graph, what to do next?
- Squaring the graph
- Replacement product
- A construction of 1/10- expanders.

Operations on a Graph

- We saw last time that we can start form a small good expander (can find one easily), perform some operation and get a bigger expander. Few ways to do it:
- Lifts (in two weeks)
- Squaring
- Replacement Products
- Combinations of the above

Attempt 1: Squaring a Graph

- We can improve the expansion of a graph by squaring it.
- So we could start from large non-expanding graph and get expander perhaps? ©
- Definition: We define the square of a graph G^{2} to be a the graph with adjacency matrix $A_{G^{2}}=A_{G}^{2}-d I_{n}$
- G^{2} has an edge between (u, v) if (u, v) are connected with path of length two. Remove self-loops.
- If graph has no 4 -cycles, then $A_{G}^{2}(u, v)=1$ for such two nodes.

Squaring a Graph

- Theorem:

Let G be a d-regular graph with Laplacian eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, G^{2} is a $\mathrm{d}(\mathrm{d}-1)$ regular graph with Laplacian eigenvlaues $2 d \lambda_{i}-\lambda_{i}^{2}$. In particular, the largest eigenvalue is at most d^{2}.

- If G is ϵ-expander, then ratio of eigenvalues to degree is ($1 \pm \epsilon$).
- Squaring the graph, we get ratio of eigenvalues to degree ($1 \pm \epsilon^{2}$), so it is an ϵ^{2} - expander.

Squaring a Weak Expander

- By previous theorem we can see that if a graph is a weak expander in the sense $\lambda_{2}=\delta d$, where $\delta \ll 1$, then the expansion almost doubles by squaring.
- The degree also squares -not so useful $: \underset{ }{:}$

Attempt 2: Line Graph

- Line graph H of G has a vertex per edge of G, where two are connected if they share an endpoint in G.
- G d-regular has nd/2 edges, so H has that many vertices.
- H has degree 2(d-1)
- If we consider one vertex u of G, then all the d edges (u, v) will be connected in H : They form a d-clique!
- Every u belongs to two d-cliques.

Spectrum of Line Graph

- Theorem.

Let G be a d-regular graph with n vertices and H be the line graph. Then the spectrum of the Laplacian of H is the same as the spectrum of the Laplacian of G , except that it has $\frac{n d}{2}-n$ extra eigenvalues equal to $2 d$.

Attempt 2: Line Graph

- Line graph is bigger than G , and degree is only a factor of two bigger, so we are in better shape, but still need to keep degree down ${ }^{*}$
- Measure the quality of expansion with spectral ratio: $r(G)=\min \left(\frac{\lambda_{2}}{d}, \frac{2 d-\lambda_{n}}{d}\right)$
- If G is a-expander then $r(G)>1-a$.
- The closer to 1 (bigger) $\mathrm{r}(\mathrm{G})$ is, the better the expansion.

Spectrum of Line Graph

- Theorem.

Let G be a d-regular graph for $\mathrm{d}>5$ and let H be its line graph. Then

$$
r(H)=\frac{\lambda_{2}(G)}{2(d-1)} \geq \frac{r(G)}{2}
$$

Plan of Attack

- We see that line graph has half the spectral radius of G. But is also has more vertices.
- Plan is to build an infinite family of d-regular graphs with spectral ratio bounded below by some absolute constant b :
- Begin with small expander.
- Take the line graph (Increase size)
- Replace the cliques with expanders (decrease degree).
- Square (improve expansion).
- Repeat.

Approximation of Line Graph

- In order to increase degree, we approximate line graph.
- We know how to approximate cliques with expanders.
- Let's replace every d-clique in the line graph of G with an expander Z of d nodes and degree z call this new graph $G o_{L} Z$

Approximation of Line Graph

- Theorem. Let G be a d-regular graph. Let H be the line graph of G and let Z be a $z-$ regular ϵ - expander. Then

$$
(1-\epsilon) \frac{Z}{d} H \preccurlyeq G o_{L} Z \preccurlyeq(1+\epsilon) \frac{Z}{d} H
$$

Approximation of Line Graph

- Corrolary.
$r\left(G o_{L} Z\right) \geq \frac{(1-\epsilon)}{2} r(G)$
- Now can we put all of those things together to get d-regular expanders?

Putting it Together

- Start from G_{0} a d-regular graph, with spectral ratio $\beta=\frac{1}{5}$ (say). Also take Z to be a z-regular ϵ-expander on d nodes where $d=(2 z(2 z-1))^{2}-2 z(2 z-1)$. Take $\epsilon=\frac{1}{6}$ (say).
- Goal is to create arbitrarily large dregular graphs of same spectral ratio (or better).

Putting it Together

- Construct $G o_{L} Z$. Degree is $2 z$, spectral radius about $\beta / 2$. Need to increase spectral radius (need it to be bigger than β for every size graph), so square twice.
- Let $\mathrm{G}_{1}=\left(\left(G o_{L} Z\right)^{2}\right)^{2}$
- Need Z of degree z and number of nodes $\mathrm{d}=(2 z(2 z-1))^{2}-2 z(2 z-1)$ as taken.
- Repeat, and set $\mathrm{G}_{\mathrm{i}}=\left(\left(G_{i-1} o_{L} Z\right)^{2}\right)^{2}$

