CS 598: Spectral Graph Theory. Lecture 11
 Cayley Graphs

Alexandra Kolla

Today

- Groups
- Cayley graphs
- Eigenvectors and Eigenvalues of Cayley graphs of abelian groups
- Random Cayley graphs with logarithmic degree are expanders

Graphs Like the Hypercube

- $V=\{0,1\}^{m}\left(Z_{2}^{m}\right.$ group $)$
- $E=$
$\left\{x, x+g_{j}, g_{j} \in\{0,1\}^{m}\right.$ with at most $\left.t 1^{\prime} s\right\}$
- x, y neighbors if they differ in t coordinates.

Degree $\mathrm{d}=\sum_{\{i=1 \text { to } t\}}\binom{m}{i}$.

- Cayley graph of Z_{2}^{m} group, if $\mathrm{t}=1$ then its the Hypercube.

Graphs Like the Hypercube

- More generally,
- $V=\{0,1\}^{m}\left(Z_{2}^{m}\right.$ group $)$
- $E=$
$\left\{x, x+g_{j}, g_{j} \in S\right.$, for any set S of generators $\}$
$x+g_{1}$

Evectors and Evalues

- For each $b \in\{0,1\}^{m}$, define the function $v_{b}: V \rightarrow R$,

$$
v_{b}(x)=(-1)^{b^{T} x}
$$

Think of b as being an index for Fourier coefficient

Evectors and Evalues

Theorem: For each $b \in\{0,1\}^{m}, v_{b}$ is a Laplacian evector with evalue

$$
\sum_{i=1 \text { to } d}\left(1-v_{b}\left(g_{i}\right)\right)=2|G b|
$$

- Where G is a matrix with the gi as rows.
- If S is set of strings with hamming weight 1, then $\lambda_{2}=2$ (hypercube).
- If S is all the strings, then complete graph.
- If S is linear code with min distance r, then $\lambda_{2}=2 r$. For expanders we need $d=O(\log n)$.

Groups

- Graphs constructed from groups are called Cayley graphs.
- Group is defined by set of elements, $Г$ and a binary operation 。
- For elements g, h in $\Gamma \mathrm{g} \circ \mathrm{h}$ is also an element of Γ.

Groups

- $(\Gamma, \circ$) form a group if
- Γ contains a special element called the identity (id) such that goid=idog=g for all $\mathrm{g} \in \Gamma$
- For every element $\mathrm{g} \in \Gamma$, there is another element $g^{-1} \in \Gamma$ such that $g^{-1} \circ g=$ $g \circ g^{-1}=i d$
- For every three elements $f, g, h \in \Gamma \mathrm{f}$ 。 $(g \circ h)=(f \circ g) \circ h$
- Group is abelian if for every $\mathrm{g}, \mathrm{h} \in \Gamma$, if

$$
g \circ h=\mathrm{h} \circ \mathrm{~g}
$$

Groups: Examples You Already Know

1. (Integers, +)
2. $(Z / n=$ Integers $\bmod n$, addition $\bmod n)$
3. (Z/p-o=Integers mod prime without zero, multiplication)
4. $\left(\{0,1\}^{k}\right.$, componentwise addition $\left.\bmod 2\right)$; every element is its own inverse
5. For some k>o, (set of non-singular k-by-k matrices over integers, addition)
6. For some k>o, (set of non-singular k-by-k matrices over integers, multiplication)
Today: groups 2 and 4 : finite, abelian!

Cayley Graphs

Cayley graph is defined by

- a group (Γ, \circ)
- a set of generators $S \subseteq \Gamma$ that is closed under inverse. That is, for every $g \in \Gamma, g^{-1} \in \Gamma$
The vertex set of Cayley graph is Γ and the edges are the pairs

$$
\{(g, h): h=g \circ s, \text { some } s \in S\}=\{(g, g \circ s): s \in S\}
$$

E.g. Ring graph on n vertices if $(\Gamma, \circ)=(Z / n,+)$ And $S=(-1,+1)(-1=n-1 \bmod n)$

Evectors and Evalues of Cayley Graphs of Abelian Groups

- We can find orthogonal set of eigenvectors without knowing S. Eigenvectors only depend on group
- Will consider adjacency matrix but doesn't really matter since Cayley graphs are regular.
- Next we re-prove the evectors of the "generalized" ring graph $=(\mathrm{Z} / \mathrm{n},+$) and any set S of generators

Evectors and Evalues of Cayley Graphs of Abelian Groups

- For cycle, we showed that the eigenvectors are

$$
\begin{gathered}
x_{k}(u)=\sin \left(\frac{2 \pi k u}{n}\right) \text { and } \\
y_{k}(u)=\cos \left(\frac{2 \pi k u}{n}\right)
\end{gathered}
$$

- Same eigenvectors if we consider any set of generators S. Eigenvalue $\sum_{g \in S} \cos \left(\frac{2 \pi k g}{n}\right)$

Expanders from Abelian Groups?

- We show that if we choose a d =clogn set of generators at random, we get a good expanderw.h.p.
- Chernoff-Hoeffding Bound for i.i.d $X_{i},\left|X_{i}\right| \leq 1, E\left(X_{i}\right)=0$:

$$
\operatorname{Pr}\left[\sum_{i=1 \text { to } d} X_{i} \geq t\right] \leq e^{-t^{2} / 4 d}
$$

